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Abstract

The group SW2) x SU(2) acts naturally on S{2, C) by simultaneous right and left multiplication.

We study the Kahler metrics invariant under this action using a global Kahler potential. The volume
growth and various curvature quantities are then explicitly computable. Examples include metrics
of positive, negative and zero Ricci curvature, and the one-lump metric df ffemodel on a
sphere.

We then look at the holomorphic quantization of these metrics, where some physically satisfactory
results on the dimension of the Hilbert space can be obtained. These give rise to an interesting
geometrical conjecture, regarding the dimension of this space for general Stein manifolds in the
semi-classical limit.
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1. Partl
1.1. Introduction

Among the geometrical procedures for quantization, holomorphic quantization is a par-
ticularly simple and natural one, and can be used whenever the classical system “lives” on a
complex Kéhler manifold. In this paper the complex manifold under study will @ SL),
and we will consider the Kahler metrics on this manifold which are invariant under a natural
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action of the group S(2) x SU(2), namely the action defined by simultaneous right and
left multiplication of the matrix in SI2, C) by the matrices in S(2).

In the first part of the paper a purely classical study of these Kahler metrics is carried
out. We find that each of these metrics has a global invariant Kéhler potential, which is
essentially unique, and is in fact a function of only one real variable. We then use this
potential to compute explicitly several properties of the Kahler manifold. These include the
scalar curvature, a potential for the Ricci form, the volume and volume growth, the geodesic
distance from the submanifold $2) ¢ SL(2, C), and a simple criterion for completeness.
Choosing particular functions as Kahler potentials we get metrics with positive-definite,
negative-definite and zero Ricci tensor; the Ricci-flat one being just the usual Stenzel metric
onT*S3 ~ SL(2, C).

A significant application of the above results, which was in fact the original motivation
for this paper, is a closer study of tie-metric on the moduli space of one-lump on a
sphere. These lumps are a particular kind of soliton that app&Piasigma models, and
have been widely studiej@,13]. In particular, the special case of one-lump on a sphere
has been studied by Speight[i0,11], where the author also examines general invariant
Kéahler metrics on S[2, C) and finds some of the results mentioned above. The approach
there however is rather different, since it is based on the choice of a particular frame for
T*SL(2, C), instead of using the perhaps more natural Kéhler potentials.

The second part of the paper examines some aspects of holomorphic quantization on
the manifold Sl2, C) with the Kahler metrics described above. We basically look at two
things: the nature and dimension of the quantum Hilbert space, and the quantum operators
corresponding to the classical symmetries of the metric.

Regarding the latter point, we start by finding the moment map of th@)Sk) SU(2)
action. This map encodes the classical symmetries of the system and, through the usual
prescriptions of geometric quantization, subsequently enables us to give an explicit formula
for the operators corresponding to these symmetries. Regarding the first point, i.e. the
dimension of the Hilbert space, the story is a bit more involved, and we will now spend a
few lines describing the motivation and the results.

If you apply holomorphic quantization to a compact Kéhlefr@anifold, it is a conse-
quence of the Hirzebruch—-Riemann—Roch formula that the dimension of the Hilbert space
is finite and grows asymptotically &/ (27h)" whenk — 0, wheres2 is the volume of the
manifold. This result is also physically interesting, since it agrees with some predictions
of semi-classical statistical mechanics. Trying to see what happens on the non-compact
SL(2, C) with our invariant metrics, we were thus led to compute the dimension of the
Hilbert space. The results obtained can be summarized as follows.

The Hilbert spacé{nq in our setting is essentially the space of square-integrable holo-
morphic functions on S2, C), where square-integrable means with respect to some metric-
dependent measure on &.C). Furthermore all these holomorphic functions can be seen
as restrictions of holomorphic functions 64 > SL(2, C). Defining the subspatpely <
‘Hhno of the holomorphic functions which are restrictions of polynomial€fh we then
find that dim#poy ~ 22/(27h)® ash — 0 whenever both members are finite. The exact
dimension oft{01y, Which we also compute, depends on the particular invariant metric one
puts on Sl2, C); its asymptotic behaviour however does not. This leads us to conjecture
that, as in the compact Kahler case, also for general Stein manifolds (i.e. complex subman-
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ifolds of C") this asymptotic behaviour of difipoly is “universal’—see the discussion of
Section 2.5.

1.2. The invariant Kahler metrics

We start by considering the action of the gratip= SU(2) x SU(2) on the complex
manifold M := SL(2, C) defined by

VG xM— M, (U1, Uz, A) > U1AU, . (1)

This is clearly a smooth action which acts #n through biholomorphisms. A detailed
study ofyr and its orbits is done idppendix A For example one finds there that all the
orbits except one have real dimension 5, the exceptional one bei(® 8UM, which has
dimension 3. For the purposes of this section, however, it is enough to quote the following
result.

Proposition 1.1. Any smoothG-invariant functionf : M — R can be written as a
compositionf o y, wherey : M — [0, +oo[ is defined by(A) = cosh—l[(1/2)tr(ATA)],
and f : R — R is a smooth even function

We are now interested in studying Kéhler metrics and forms s#efo begin with, the
well known diffeomorphismM ~ $3 x R3 implies that the de Rham cohomology &f
ands3 are the same. In particular every closed two-form\is exact. On the other hand,
regardingC* as the set of % 2 complex matrices, we have thitis the hypersurface given
as the zero set of the polynomidl—~ 1 — detA. Since the derivative of this polynomial is
injective on the zero sel/ is a complex submanifold @®*. It then follows from standard
results in complex analysis of several variables (see Theorems 5.1.5, 5.2.10 and[b6]2.6 of
that M is a Stein manifold with Dolbeault grougé? 4 (M) = 0 (except forp = g = 0).

From all this we get the following lemma.

Lemma 1.2. Any closed1, 1)-form @ on M can be writtenw = (i/2)0d f, wheref is a
smooth function on Mf w is real, then f can also be chosen real

Proof. Thisisjustlike the usual proof of the loc#l-lemma. As argued above, the closeness
of w implies its exactness, henee= dyr = 9y%1 + 3y1-0 for somey € H1(M, C). Since
a0l = 9y10 = 0 (becauseis a (1 1)-form)andH*-O(M) = HO1(M) = 0, we have that
¥01 = § f1 andy-0 = 3, for some smooth functiong; on M. Defining f = 2i(f2 — f1)

we thus getr = (i/2)9df. If w = (i/2)33 f is real, then(1/2)(f + c.c.) is a real potential
for w. O

Having done this preparatory work, we now head on to the main result of this section.

Proposition 1.3. Supposa» € 2-1(M; R) is a closedG-invariant form Then one can
always writew = (i/2)33(f o y), where f and y are as ifProposition 1.1and f o y is
smooth. The function fis unique up to a constant. Furthermbeshermitian metric on M
associated witlw is positive-definite ifff” > 0 on ]0, +oo[ and f” > 0 on[0, +ool.
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Proof. By the previous lemma = (i/2)33f for somef € C>®(M;R). Now, for any
g € G, theG-invariance ofw and the holomorphy of, imply that

w=1yio= w;lzaé}f = 1235(} o V).

Hence by averaging ovgre G if necessary (recall thdt is compact), one may assume that
the potentialf is G-invariant. The first part of the result then follows frafnoposition 1.1
To establish the second part, recall that the associated hermitian metric is defined by

whereJ is the complex structure oW . Since bothw andJ are G-invariant (the last one
because/, is holomorphic), we conclude that algd is G-invariant. Now consider the
complex submanifoldd ¢ M consisting of the diagonal matrices M. It follows from
Lemma A.lof Appendix Athat A intersects every orbit af. Hence, by the&-invariance,
H is positive-definite onM iff it is positive-definite at every point ofA. To obtain the
condition for positiveness ovet we now use a direct computation.

Take the neighbourhodd:= {A € M : A11 # 0} and the complex chattof M defined

by

71 22
e U— C* x C?, sfl(zl, 22,23) = 1+ z0z3 |- ®3)
13
21

Note thatA c U/ and thate is a chart ofM adapted toA. Definingx(A) = tr(ATA)/Z we
have thaty = cosh~1(x) and

x0e Xz) = $(1zal? + Iz2)? + Izal? + 11+ 2223/ 1z11?).

A direct calculation using the chain rule now shows that, on a poim(djag;l) € A, we
have

_ s i _ Jie) _ _
w=500(foy) =3 [ PE dz1 A dz1 + ZsTh(y)(dzz AdzZo + dzz A dzs)} . (4)
and hence
() _ ' _ _
H = d d — d d dza). 5
P 71 ® dzg + Zsmh(y)( 72 ® dZp + dz3z ® dz3) )

Thus at points ofA such thaty > 0 (i.e. |z1] # 1), we have sinldy) > 0 and the
positive-definiteness off is equivalent tof’(y), f”(y) > 0. On the other hand, sindé

and the chart are defined over all 4f continuity implies that at a point o with y = 0

(i.e.|z1] = 1) we must have

H = f"(0)dz1 ® dZ1 + 3 f”(0)(dz2 ® dZ2 + dz3 ® dZ3),
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where it was used that
/ /
S lim o

y—0t sinh(y) - y—>0t Y

_ f// (0).

Thus at this point the positive-definitenessbis equivalent tof” (0) > 0. This establishes
the last part of the proposition.

To end the proof we finally note that formu(8) implies the uniqueness gf (y), and
hence the uniqueness @fup to a constant. O

Roughly speaking, this proposition guarantees the existenGemfariant potentials for
G-invariant Kahler forms. A particular feature of these potentials, which will be crucial for
the explicit calculations later on, is that they are entirely determined by their values on the
diagonal matrices, since every orbit of tGeaction contains one of these. Having this in
mind, we now end this section by presenting a technical lemma which will prove useful on
several occasions.

Lemma 1.4. Suppos€ is a smoottG-invariant function on Mand consider the subman-
ifold A = diag(za, zl_l) : z1 € C* of diagonal matrices in MIf 2 = h(|z1]) is a smooth

function onA such thatddh = 83f|4, then2f(z1) = h(z1) + h(zg*) + const, on the
submanifoldA.

Proof. The hypothesis is thath/dz1071 = 82 f/8z19Z1 on A. Writing z1 € C* aszy =
r & and using the expression for the laplacian in polar coordinates, we have

_ P(f—h) 1

071071 4

AP h)_l 92 1a+1 9
T4 \r2  ror r2op2

)(?—m.

But theG-invariance implies thaf only depends on; since the same is assumed fiorwe
get

2 19\ - -~
—+-—)(f-h=0= f—h=Alogr+B.
or ror

Now, G-invariance also implies that(z1) = f(z; %), thus
2f(z1) = f(z0) + f(z3H) = h(z1) + h(z;Y) + Adlog|z1| + loglza| ™) + 2B
= h(z1) + h(z71) + 2B. O

1.3. Curvature and completeness

Throughout this sectiom will be the Kahler form of aG-invariant Kahler metric oi/.
Thus according troposition 1.3ve can write
» = 3()3(f o y), (6)

where f o y is smooth andf satisfies all the conditions &froposition 1.3
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The first task now is to calculate the Ricci foprassociated to this Kahler metric. More
precisely, we will obtain a potential far expressed in terms of the functigh

Proposition 1.5. The Ricci form of the metric with Kahler formis given by

/ 2
p=—iddlog [(%) f”(y)} :

Proof. The G-invariance of the metric implies th&-invariance of the Ricci formp.
Thus, byProposition 1.3p has a globalG-invariant potentialp. Now consider the chart
U, z1, 72, z3) for M defined in the proof of the same proposition. According to a standard
result, if in this chart

oly = (i/h,pd* A dzF,

then the Ricci form is given by
plu = —iddlog(deth,p).

In particular, over the complex submanifaldof diagonal matrices we have
(i/299p|4 = pla = —iddlog(deth,p)| 4.

But (5) gives ush,z over A4, and so we compute that

B _ 1 £ 2 1
log(deth,z)| 4 = log (m (Zsinhy) f (y)> -

Since this function only depends ¢n|, by Lemma 1.4we get that

o FON
pla= —2Iog<<sinhy> f (y)) + const

Finally the G-invariance ofp guarantees that this expression is valid all a\erThus we
conclude thap = (i/2)3dp has the stated form. g

The next step is the computation of the scalar curvature. Note thét-iheariance of
the metric implies th&-invariance of this function.

Proposition 1.6. The scalar curvature of the Riemannian metric associated with the Kahler
formw is

g2 d ((f/)zim (_S"‘“Zy))
= 2 dy dy O\ 77(mz))

Proof. Let us callg(y) := log(sinh2y/f”(f)?), so thato = i39d(g o y). The same calcu-
lations that led to formulé4) now give

. g// . g/ . )
ola=i <|Zl|2 dz1 A dz1 + Zsinhy (dz2 Adzo + dzz A dZ3)> . (1)
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Writing o = (i/2)h,5 dz* A dzf andp = (i/2)r,5dz* A dzP, the scalar curvature of the

associated Riemannian metricsis= Zh“BraB. Thus using4) and (7)we can compute the
restriction ofs to the submanifoldi:

g// g/ 2 d 2
sla =25 +4% = =5 —((f)%). ®8)
AT T T (2 dy
The G-invariance ofs then shows that this formula is valid all ov&f. O

In the last part of this section we will make contact with a paper by Patrizio and Wong
[9]: this will give us almost for free some results about the completeness Gf-theariant
metric associated t@.

To make contact one just needs to note that the linear transformatiéfi defined by
the matrix

1 0 0 -i
0 1 —-i O
0 -1 -i O
1 0 0 i

takes the standard hyperquad@lg = {w € C*: ) w,f = 1} to M, and the norm function

lw||? on Q4 to the functionx(A) = tr(ATA)/Z onM. Therefore all the results 9] valid
for (Q,, |lw||?) can be restated here fa¥/, x). In particular we have that

(1) The functiony = cosh~Lx is plurisubharmonic exhaustion avf, and solves the
homogeneous Monge—Ampére equatiodpr y~1(0) = M—SU(2)[9, Theorem 1.2]

(2) Supposef = f o yis a strictly plurisubharmonic function a¥. Then with respect to
the metric defined byi/2)3d 7, the distance i between the level sefs = a} and
{y=>b>a}is[9, Therorem 3.3]

1 fb) (f_l)”(t) 1 /-b
D(a,b) = — - dt=— Vv () dy. 9
“CO=5lw Vo0 YT ) VO ©)

Furthermore, the distance-minimizing geodesics between these level sets are the integral
curves of the vector fiel& /| X ||, whereX is the gradient vector field of (one can
check directly that # 0 onM — SU(2)).

As a consistency check, we remark that the strict plurisubharmonicit§ ef f o y
together withProposition 1.3guarantees thaf”(y) > 0 on [0 +oo[= y(M); thus the
integral formula for the distance is well-defined. It is now more or less straightforward to
prove the following proposition.

Proposition 1.7. The metric on M with Kahler formw is complete if and only if

1 [t
D(0, +00) = 72/0 V() dy = +oo.
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Proof. By Hopf—Rinow, the metric is complete iff the closed bounded setahfw) are
compact. So suppose that0, +00) = +oco and thatB is a closed and bounded subset of
M. Then forb big enough we have

D(0, b) > supD(0, y(x)) = B C y~ ([0, b]) = x~1([1, coshb]).

xeB

But x is just the usual norm ofi* restricted taM, thusB is also closed and boundedaH,
and so is compact.

Conversely, ifD(0, +00) < +o0, thenM itself is a closed bounded set which is not
compact, and thus the metric is incomplete. O

1.4. Volume and integration

The purpose of this section is to study the integrals 0¥rw) of G-invariant functions,
wherew is as in(6). More precisely, we want to prove the following result.

Proposition 1.8. Leth be a smootlG-invariant function on Mwhich byProposition 1.1
can be writter, = h o y, and letM, be the open submanifold ([0, 7[) ¢ M. Then we
have that

A d ., .3
/Mrha = ?/o h(y)d—y(f (»)~dy. (10)

Notice thatw?3/3! is the volume form of the metric o associated witho, so with the
particular choicé = 1 we get the volume aff,. Remark also that with = 1 ors, wheres

is the scalar curvature given Byoposition 1.6the integral on the right-hand side is trivially
computable. Thus taking into account the restrictionsfamposed byPropositions 1.1
and 1.3 one gets the following corollary.

Corollary 1.9. For the K&hler metric on M associated with the volume oM, and the
integral of the scalar curvature oveM, are, respectively

o w2210 g 3))
2 d 2 —log| == '
300/ ()° an FOTg N\ o)),

In particular M has finite volume iff’ (r) is bounded

We now embark on the Proof éfroposition 1.8To start with, it will be convenient to
restate here some results usefllid,11]to study the lump metric.
Consider the Pauli matrices

fo 1 [o i RE
TS 1 o0 PT|i oot ®To -l

so that{(i/2)z,} is a basis for the Lie algebra @). Associated to eacki/2)z, is a
left-invariant one-forms, on SU?2), and{o,} is a global trivialization of the cotangent
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bundle of SY2). Then according t§10,11]and the references therein we have that:
e There is a diffeomorphisnt’: SU(2) x R3 — M defined by

XU, %) = U(\/1+A21+X~?), with 1 = |7].

e The usual actiony of G on M is taken byX'to the actiony on SU2) x R3 given by
Vwr.up (U, %) = (U1UU3 1, Ry, (1)), (11)
whereR : SU(2) — SO(J) is the usual double covering; explicitiRy, € SO(3) has
component§Ry,)ab = (1/2)tr(raU2rbU;).
o Regarding they, and the d,, as one-forms defined over $2) x R?, the actiony acts
on these forms by, /., (o, dA) = (Ry,0, Ry,di).

e The Euler anglesg, o, y) €]0, 4n[x]0, =[]0, 2n[ define an oriented chart of SP)
with dense domain such that, on this domain

01 = —siny da + cosy sina dg, 02 = cosy da + siny sinedg,
o3 = cosa dp + dy. (12)

The plan now s to use the diffeomorphistito compute the integrals on $2) x R3, instead
of M. Since theo,, 1.} trivialize the cotangent bundle of $2) x R3, the pull-back byt
of the volume form onVf can be written
(,()3 -
= X*g = (U, \)o1 Aop Aoz Adrg Adis A dArg

for some non-vanishing functioia on SU2) x R3. Moreover,. must be invariant under
¥, because the volume form @ is invariant undery. But notice now that, undef

o RU252>01A02A03I—> detRy,)o1 A 02 A 03 = 01 A 02 A 03,

becaus&Ry, € SO(3). For the same reason, als0n dio A dig is invariant, and hence
o1 A o2 Aoz Adrig Adig AdArgisinvariant too. This fact together with the invarianceuof
implies the invariance of the functigin. From the formulg11) for the actiony it is then
clear thati only depends o = |X|.

The computation of the functiofa(h) is now straightforward. First we have

. i i i a 9 0
) = M(1d,0,0,1) 5771, ETZ, 5‘53, 871’ aTZ, 373

== Xl = s, Xe— ).
6(60 ) x(1d,0,0,1) < « <211> *8X3)

On the other hand, using the ch@®) and (4) at the pointg(A) = X(1d,0,0,1) =
diag(v/1+ A2 + X, v/1+ 22 — 1) of M we also have

1 i 3 //( / B B B
6(6{)3)(]()0 = (E) ( e )2 <2];i:2y) dz1 A dz1 A dzo Adzo A dzz A dzs.
V1I4+2A2+ A
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Finally a tedious calculation that we will not reproduce shows that
_ _ _ i 0
(dz1 A dzy A dzo Adzo A dza A dZ3)g) (X* <§rl> e X*—)

0A3
— 4iV1+ 22 (\/1+x2 +/\)2,

and so we get

AU, 7)) = ) =

V1422 < f(yo &)
8 sinh(y o X)

Having calculated the volume form on 82 x R3, the rest of the proof dProposition 1.8
goes on smoothly.

Call as usuak(A) = tr(ATA)/Z andy = cosh™1(x). A quick calculation shows that
xo XU, %) =1+ 2,2, and so we have an explicit relatign= y(1). From this relation it
is clear that¥~1(M,) = SU(2) x B;, whereB; is the open ball, centered at the origin of
RR3, with radius! such that 14+ 2/2 = coshr. Hence, for any invariant functioh = % o y
on M we have

~ a)3 ~
/ h— = / (hoX)u
M, 30 Jaimy

= / (h- 2)(y(A))o1r Aoz Aoz Adrp Adio A dAg
SU2)x B

1
= (/ g1 A 02 A O'3> / (h- [L)(y(k))4r[k2 dA.
SU2) 0

Using the value ofi(1) and the relatiory = y(1), a change of variables in the last integral
shows that it coincides with

2
) f'(yoX).

" he) o) (F )2 d
16 Jo NS ()T dy.

The first integral can be computed usifi@). Namely we have

2 pm pdm
/ 01 A0 A O3 = / / / sinadgdady = 1672,
SU2) 0 0 0

Putting these two results together we finally obtain the formula statBdoiposition 1.8
1.5. Examples

1.5.1. The one-lump metric

The so-called moduli space of degree one-lump on a sphere, which we wilt;al
just the group of rational mag® — S2. Identifying $2 ~ C P, this group is the same as
the group of projective transformations

PGL(2,C) = GL(2,C)/C* = SL(2, C)/{%1}.
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Inthe physics literature\1 is the space of minimal energy static solutions of the sigma-model
defined on the Lorentzian spacetirfié x R with $? as target space. The kinetic energy
functional of this sigma-model induces a certain Riemannian metritfnvhich is also
very natural geometrically. It can be defined in the following way.

Let w; : CPY — CP! be a one-parameter family of projective transformations, i.e. a
curve onM, and callw, its tangent vector at= 0. For each e CPL t — w,(x)isacurve
in CPY, and we callu(x) € Ty, CP? its tangent vector at = 0. Then the Riemannian
metricg on M is defined by

g(wp, wo) = f

xeCP

), v(x) voly, (13)

where#h is the Fubini—Study metric ot P! and vo}, is the associated volume form. In
informal terms, one may say that the squared-length of an infinitesimal curve w,

in (M, g) is just the average over € CP?! of the squared-lengths of the infinitesimal
curvest — w;(x) in (CPL, h); thus the measure of “displacement” ™ is how much the
image points ofv, are moved. Using the fact that transformation®8U(2) ¢ PGL(2, C)
are isometries of @ PL, k), it is not difficult to check that right and left multiplication in
PGL(2, C) by elements ofPSU(2) are in fact isometries afM, g).

Now consider the usual chart of the projective sp@éé\{[0, 1]} — C, [1, z] — z, and
let (u*, u?, u®) be any complex chart 0¥ defined on a neighbourhood of the pai. In
these charts we have
ad

p =9 g @ = 2@ = L@ = 2w 0)
o= 5 Wi Vi) = e = e D) = g a2 m e

3 0 e i dzAdz
W= Z)=h:=——1log(l 2. Vol = -———,
<Bz Bz) 11 = g5 09+ 1) "= AA P2
where the last two equalities are standard properties of the Fubini—Study metric. Calling
p :=log(1+ |z|?) the local potential of the Fubini—-Study metric we get

ol wh) — / . (wo(z)) 2@ du/ d(wu(2)) di* i dz A dz
800 = | ooz O ol dr ek dr 21+ 12192
du/ ditk 92 i dzAdz
= ar dr /Zec auig P G ey

Cdu/dit 9% i dz A dz

= dr ot 2 fzeC Aol ey
Since this equation is valid in any chant) of M, we conclude that the function

dz A dz
1+ |z]?)?

is a global Kahler potential for the Kéhler form owl associated with the Riemannian
metricg. Calling this formw, we thus haves = (i/2)3da.

It turns out, however, that the integral definiag@u) is difficult to compute for a general
w € PGL(2,C), and so we cannot calculate the potential directly. To circumvent this
obstacle we proceed in the following way.

a(w) = 12 / log1+ w()?)
ze
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Firstly, using the double covear: SL(2, C) — PGL(2, C), we work onthe more palpable
group SL(2, C). Notice thatt*w = (i/2)3d(a o ), becauser is holomorphic. Moreover,
the invariance o andw by right and left multiplication by elements ¢fSU(2), implies
that 7*w is invariant by the usual actio#r of the groupG on SL(2, C). Thus we are on
familiar ground. FronProposition 1.3ve get thatt*w = (i/2)33 f, for someG-invariant
function 7. The plan now is to computg using the potentiat(w) andLemma 1.4

In fact, for a diagonal matrid = diag(&, £1) one can compute that

z

. 2 _
aorr(A):lZ/(clog<1+ 2 ) dz n d2
Z€

A+ 222
o r? r log|¢|*
:271/ lo (1+—> dr=m ,
o I\ ER) @y e g4 -1

and since
d(aom|s = —2i(T*w)|s = 03f]a,
from Lemma 1.4we get that

&4+ 1

m4_1mma?

2fla=2n

Now using the formulas(A) = tr(ATA)/2 = (€12 + |£]72) /2 andy = cosh~(x), a little
algebra shows that, over c SL(2, C)

Fox

= log (x +v/x2 — 1) = my cothy. (14)
TheG-invariance off finally guarantees that this formula s valid all over@&LC). We have
thus obtained an explicit potential for the K&hler forrtw. Notice thatf(A) = f(—A)
for any matrix in Sl(2, C), and sof descends to a function on P@. C); this will be a
potential for the Kahler fornm on this space.

Using the potential functiorf and the results of the previous sections, we will now
derive a series of properties of the metgicExcept for the volume and the Ricci potential
computations, which are new, these properties were already obtaifidd,insing different
methods.

Substituting expressiofi4) into Propositions 1.5 and 1,.8ve obtain a potential for the
Ricci form and the scalar curvature (M, 7*w). The first is

5(y) = —2log(y coshy — sinhy)(sinh 2y — 2y)?/(sinhy)®,

and the second has a rather long expression which we will not transcribe. The plot of this
expression, however, coincides with the onglif] (actually it seems to be one half of the

one in[11], but this must be due to different conventions), and thus the scalar curvature is a
positive increasing function ofthat diverges at infinity. It is worthwhile noting that, for this
metric, the positiveness of the scalar curvature actually comes from the positive-definiteness
of the Ricci tensor, as can be seen by applyRrgposition 1.3o the potentiajp. Using

the criterion ofProposition 1.7one may also easily verify that the metgds incomplete.
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Finally, from Corollary 1.9 and introducing a factor 1/2 to account for the double cover
(M, r*g) — (M, g), we obtain that the volume of the moduli space is

vol(M, g) = %nG.

1.5.2. Other metrics

We will briefly mention here other examples Gfinvariant metrics onM; these are
interesting for their curvature properties.

First of all it is clear fromProposition 1.5hat any solution of

L0 =esiny?. e 0
y

will give rise to a Ricci-flat metric o/. This metric coincides with the Stenzel metric on
TS® ~ SL(2, C) [12], as can be seen by using the correspondgvice> Q4 described in
Section 1.3and comparing with Section 7 §f2]. It is a complete metric.

Experimenting with other even functiorf§y) one can find metrics with a wide range of
behaviours. For example it follows froRropositions 1.7, 1.5 and 1tl#at the metrics defined
by f(y) = y? and f(y) = coshy are complete and have, respectively, positive-definite and
negative-definite Riccitensor. The last one is just the induced metric by the natural inclusion
M c C* The first one has also the pleasant property that the paramit@recisely the
geodesic distance from the submanifold (@Uc M, and so the volume o#, grows
exactly with the cube of this distance (98¢ andCorollary 1.9.

2. Part 11: Holomor phic quantization
2.1. Introduction

In the second part of the paper we want to study the holomorphic quantization of the
Kéahler manifolds (SI2, C), w), wherew is any G-invariant Kahler form. We will firstly
obtain the quantum operators corresponding to the classical symmetries of the system. After
that we will compute the dimension of the Hilbert space of the quantized system. This last
calculation takes a bit of work, but in the end we find some physically satisfactory results,
as described isection 1.1

2.2. The classical moment map

Recall the actiony : G x M — M described irBection 1.1and suppose = (i/2)83( fo
y) is anyG-invariant Kahler form o\ (seeProposition 1.8 Then, tautologicallyy is a
symplectic action oriM, w). SinceG is a compact semi-simple Lie group, general results
state that there is a unique moment mapM — g* associated with this action. We will
now give an explicit formula fop.

Proposition 2.1. Foranym € M and(a, b) € g = su2) ® su2) we have

i f'(y)

T
4'sinhy tr(mm mb),

u(a, )—
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wheresu(2) is identified with the space @fx 2 anti-hermitian matricesandy = y(m) is
the function defined iBection 1.1

Proof. Sincew = —do, wherea = (i/2)9(f o y) is aG-invariant one-form o, a well
known resulf1, Theorem 4.2.103tates that the moment map satisfies

w(m)[X] = o (X7 (15)

foranym € M andX e g, wherex* s the vector field oM generated by the one-parameter
group of biholomorphismgexyix) : M — M. Explicitly, forany(a, b) € g = su2)@su2)
one can compute

(a, ) = %(etam e ), _o=am-—mh (16)

where we regard;,, M C T,,GL(2,C) ~ M(2, C).

On the other hand, for eagh € M\SU(2), the formulay = cosh—l((1/2)trATA)
gives a local extension of to a neighbourhood i (2, C) of m. SinceM is a complex
submanifold ofM(2, C) ~ C?, it is then true thad(f o W1, m = 9(f o y)m. Applying
these formulas we thus get

. 4 ~
0
anl(@.b)1= 5 /()Y 3 des(am—mb
f=1""

. 4
i 1
=5 Z ZSinhka(m) dzx(am— mb)

Sy

4SInhy tr(m am—m mb) a7

Z m(@am— mby = | grfy)

k=1

Sincea and (a, b)* are smooth on, this formula can be extended by continuity from
M\SU(2) to M. It coincides with the formula in the statement because of the cyclic property
of the trace. O

Remark. Although we will not reproduce the calculations here, a number of properties of
the moment map can be obtained quite straightforwardly. For example, with respect to
the norm on s(2)* & su2)* induced by the norm-tr a2 on su2), one has

1
lw(m)|1? = Zf’(y(m))z,

1
w(M) = {(a, b) € sSU2)* ®su)" : |lall = [Ib]l € [0, —= f'(400) [ }
2«/§f
The moment map obtained above associates toX¥azly a functionu(-)[X] € C*(M). In
the framework of geometric quantization this function is regarded as a classical observable,
and the quantization procedure associates to it a certain hermitian operator on the quantum
Hilbert space. This correspondence is the subject of the next section.
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2.3. Holomorphic quantization

In this section we want to study the quantization of the classical phase &ifaas.
We will use holomorphic quantization, which is the simplest and most natural quantization
procedure on a Kahler manifold. Refinements such as the metaplectic correction will be left
out. For background material consult for exam{ilé].

We start with prequantization. Since the Kahler fasra: (i/2)93( foy) is exactonV, the
trivial line-bundleB := M x C with the canonical hermitian metri¢m, wi), (m, wp)) =
w1w?2 is a prequantum bundle. Now consider the natural unitary trivialization of this bundle
m +— (m, 1), and the connectioW on B defined by the one-form

1 .
0= -@=0)(foy

with respect to this trivialization. The curvature form Gfis d = —ih~*w and, since
6 is pure imaginary, the connection is compatible with the hermitian métri¢. Thus
according to the definitions ifi4] (B, (-, -), V) is the prequantum data.

The step from prequantization to quantization is made by choosing a polarization on
M. SinceM is Kahler the natural choice here is the holomorphic polarization, that is, the
polarization spanned by the tangent vectyig*. With this choice, a section — ¢(m) =
(m, p(m)) of B is polarized iff V%1 = 0, wherev®! denotes the anti-holomorphic part
of the connection. But

— _ 1 - B _
VO =8+ @6t = 09 + 2p0(f o)) =06 = pe IV, (18)

whereg is any holomorphic function oi. Thus the space of polarized sectionsBotan
be identified with the space of smooth functionsMrof the form(18).

The final step to construct the quantum Hilbert space is to define an inner product of
polarized sections. This is done by the formula

(91, 92) =/M(<p1, </)2)6=/ prpp e o0/ P, (19)

wheree := (2rh) 3w3/3! differs from the metric volume form oM, w) by the factor
(27h)~3. The quantum Hilbert space of holomorphic quantization, which we dedate
is then defined as the space of polarized sectiomsaffinite (-, -)-norm (sed14]).

For a better understanding of this Hilbert space, one should get a clearer picture of the
holomorphic functiong on M. This picture is provided by the next proposition. Since its
proof is rather out of context and may easily be skipped, we defer the proof to the end of
the section.

Proposition 2.2. RegardM = SL(2, C) as the zero set if* of the polynomialD(z) =

7124 — 7223 — 1. Then the natural restriction is an isomorphism between the rings of
holomorphic function€(C*)/J and O(M), where J is the ideal o®(C*) generated by
D(2).

In other words, this proposition states that every holomorphic functioiois the
restriction of a holomorphic function ofi*, and furthermore two holomorphic functions
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on C* restrict to the same function o iff their difference is divisible byD(z). We thus

get a characterization of holomorphic functionsMdnin terms of entire functions ofi%,

which have a global power series expansion and are generally much better understood.
For the rest of this section we will look at operatorsing. If 2 € C*°(M) is a classical

observable, geometric quantization associates to it an opéramHHQ defined by
h(g) = hVy, 0 +he Vo € Huo, (20)

whereY} is the vector field oM defined by.y,w = dh (a warning: in[14] the field

Y, is defined with the opposite sign). This observable-operator correspondence does not
always work, however, because sometimes the resulting opérttkes polarized sections

into non-polarized ones. To prevent this, one further demands that the fliysifould
preserve the polarization, i.e. the flow should be locally holomorphic. Thus in principle
not all observablegd € C°°(M) can be “guantized” by this method. It can be shown,
however, that if this condition is fulfilled theh is a self-adjoint operator in the Hilbert
space(HHg, (-, )) (see[14] and review3]).

We will now apply formula(20) to the observables coming from the classical symme-
tries of (M, w), that is to the functiongX := u(-)[X] € C>®°(M) described in the previous
section. Notice that, by definition of moment map, for eacte g the vector fieldy,, x
is exactlyX*—the vector field generated by the one-parameter group of biholomorphisms
Yexpitx) - M — M. In particular the flow onfﬂx, which isyexptx), preserves the holomor-
phic polarization, and so formu{20) may be applied t@.~.

Putting togethe(18), (20) and (15)ve get

(X9 =hVyse + uX g = iR[(dp) (X*) + 8(XH)] + a(XH)e

_ 1 1 - s
— iR [(dqb)(x#) — a0 »X* + ACRL y)(x#>] g~ (fox)/4h

+ %8(.1‘ o V) (X*)p = ih(3g)(X*) eI/, (21)

For an even more explicit fgrmula, suppase= (a, b) € su2) ®su2) and thatp € O(M)
is the restriction of a certaih € O(C*. Then using16) and the fact thad is a complex
submanifold ofC*
4 3(}
0B (X =3 = (mz* @m—mb), (22)

k=1

wherez¥(am— mb) stands for the entry* of the matrixam — mbunder the identification
M(2, C) ~ C* Formulag21) and (22}hus give an explicit description of the operafof
onHnq-

Proof of Proposition 2.2. Let Ac4 and Ay be the sheaves of germs of holomorphic
functions onC* and M, respectively. By Theorem 7.15 {] these are coherent analytic
sheaves. Furthermore, callirf@u the trivial extension ta@C* of the sheatd,, over M, it
follows from theorems IV-D8 and VI-B5 d#] that.4, is still coherent analytic and has
the same cohomology a&;,.
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Consider now the short sequence of sheaves ©¢er
D ~
0— Aga— Aca>Ay — 0, (23)

whereD is the map induced by local multiplication by the polynontiak) andr is defined
by

W (f) = 0 fUNM=0 F(U.;l)
rlv(h = flunm otherwise €1 A

for every open sel/ in C* and everyf e I'(U, Acs). Itis not difficult to check thag23)is
in fact an exact sequence. (Succincilyis injective because the stalks.df- are integral
domainsy is surjective becaus# is a complex submanifold df#; kerr < im D by the
Nullstellensatz for germs of varieties and the irreducibilityiut).)

We therefore obtain an exact sequence of cohomology groups

0— HOC* Aca) — HO(CH Aca) — HO(M, Ay) — 0,

where we have used that?(C*, A)) ~ HP(M, Ay) and that, by Cartan’s theorem B

[4, p. 243] HY(C*, Ac4) = 0. Since the zeroth cohomology groups are just the global
sections of the respective sheaf and, under this identification, the first and second maps
are, respectively, multiplication by (z) and the natural restriction, we finally obtain

that

I(C4, Acs)
D(z) - I(C4, Aca)

OM) = (M, Ay) ~ = O(CH/J. O

2.4. Dimension of the Hilbert space

In this last section of the paper we will be concerned with the dimension of the quantum
Hilbert space associated with the Kahler manifoM, »). More specifically, using the
identification of the previous section

Hrg =~ {¢> e OM) =OC*/J : / |p|2 e (fon/2he - —|—oo} ,
M

let Hpoly be the subspace ¢ipg consisting of the holomorphic functions that can be
represented by polynomials @f. Then we will be able to compute the dimensiortbly
interms of the Kahler potentigl. Furthermore, wheW, w) has finite volume?2 and# o1y
has finite dimension, we will show that dfft{ o1y ~ 22/(2nh)3 ash — 0%. These results
are finally discussed in Questions 1-3.

The main step towards proving the stated results is the following proposition, which will
be proved at the end of this section.

Proposition 2.3. Let ¢ be a holomorphic function on M that can be represented by a
polynomial inC#, of degree |whose homogeneous term of highest degree is not divisible
by z124 — z223. Theng is in Hpqly if and only if
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+00 —d
|| cooshy) e gy < oo, (24)
0 y

Using this proposition the dimension #fy01y can be computed quite straightforwardly.
In fact, assuming that € N : (24) is satisfied is not empty (which will be shown to be
true when(M, w) has finite volume), and calling € N U {+o00} the maximum of this set,
we have the following corollary.

Corollary 2.4. The complex dimension &fpoly is (m + 1)(m + 2)(2m + 3)/6.

Proof. Let P, ¢ O(C*) be the subspace of homogeneous polynomials of degael
P, the spacebo<;<,, P;. Calling X : O(C* — O(M) the natural homomorphism, let
alsoX] be the restriction of'to P—,.

By Proposition 2.3ve have that{poly = X(P<;), thus

dim Hpoly = dim(P<,,) — dim(kery ) = dim(P<y,) — dim(P<,, N kerk).

But Proposition 2.2tates that ket is the ideal inO(C*) generated by1z4 — z0z3 — 1,
and so it is clear that the linear map

Pep—2 — Py Nkerx, 0(2) = (124 — 2223 — 1) - Q(2)

is an isomorphism. Hence difA<,, Nker X) = dim(P<,,—2), and dimHpoyy = dim(P,, &
P,—1). But it is a well known combinatorial fact that difj—the number of ways of
choosing four non-negative integers whose sum-sis

3+m
3 9
and the result follows directly. O

In practice, by looking at the asymptotics of the potentfiait is usually not difficult to
compute the integen.

Example 2.5. The lump metric oM studied inSection 1.5has a Kahler formr*ow =
(1/2)83( f o y), with f(y) = my cothy, and finite volume?2 = 7%/3. From the asymptotics
f=myl+2e @ +2e® +0E )] asy > 400,

one gets that
o d _
(coshy) e /[ f ()] = O(y eT#H72Y) - asy — oo,
y

andson =max{l € N: 1 < 2+ n/2h}.
An interesting feature of this example is that, if wellets 0F, thenm ~ 7/2k, and by
Corollary 2.4 we obtain
ms 73 2
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This is exactly the answer expected in semi-classical quantum mechanics for the quan-
tization of a phase space of volung2 and real dimension @]. Before discussing the
significance of this coincidence, we will first show that this property is more general, and
is in fact valid for all theG-invariant Kéhler metrics oM of finite volume.

Proposition 2.6. Suppose = (i/2)33(f o y) is the Kahler form of a metric on M of finite
volumes2. Then the constant = m(f, k) satisfies

(39)1/3 (39)1/3
— k—1<m< — k,
onh TR EME Ty

where

k=k(f) = sup{/\ € ]Rar : /OO e/\."d_dy[f/(y)ﬁdy isfinite} € [0, +o0].
0

Proof. By Corollary 1.9we have that

0-" [ Sirord = im0 (25)
3 )y dy YIR=3 y—+00 P
thus the finite volume condition implies that> 0 and thatD := lim,_, ;. f'(y) is a

positive finite number. By L'ipital’s rule we also get that Ii%+my*1f(y) = D.Itthen
follows that, forg real

] _ 1 fy) +oo if B > 0,
m y l _ _
y—>“ +00 (e coshy) exp{ [ﬂ 2n ( y D)] y} { 0 if B<0. (26)

Now, by definitionm is the biggest of the integefs= N such that
+00 —d
[ cooshy) e 2Ly (27)
0 y

converges. This integral, however, is the same as

+00
/ {(e‘y coshy)lexp[ﬂ L (M - D) y“ e(_ﬁH_D/Zmyi[f'(y)]SdY~
0 2h \ 'y dy

If ] — D/2h > k, then choosings in the interval [0/ — D/2h — k[ and using(26) and
the definition ofk, it is clear that(27) diverges; thusn < k + D/2h. If | — D/2h < k,
then choosing8 in ]I — D/2h — k, O[, the same arguments show tHa¥) converges;
thusm > k + D/2h — 1. Since from(25) we haveD = (352)Y/3/x, the proposition is
proved. O

Corollary 2.7. Given any G-invariant Kahler metric on M of finite volunig let o =
(i/2)99( f o y) be its Kahler formThen the associated quantum spa&gy is finite-dimen-
sional iffk( /) is finite. In this cas@imcHpoly ~ 2/(2nh)® ash — O,

Proof. It follows directly fromCorollary 2.4andProposition 2.6 O
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Remark. The lump metric is an example with finite volume and finite-dimensiéfjaly .
There are however metrics of finite volume with infinite-dimensicgd)y. For example,

define f/(¢r) as any extension afi—~ (1 — e‘fz), t € [1, 400, to a smooth odd function on
R with everywhere positive first derivative. Then callifigany primitive of f/, the metric
on M with Kahler potentialf o y has the desired property.

2.5. Discussion

The asymptotic valug/(2x7)3 for the complex dimension of the quantum Hilbert space
is both physically and geometrically quite significant. Physically because semi-classical
statistical mechanics predicts that if you quantize a classical systemmwdtgrees of
freedom, thus with 2-dimensional phase space, you should get one independent quantum
state of the system for each cell of voluri®rh)" on the phase spad8]. Hence if the
phase space has finite volurfie one gets2/(2xh)" independent quantum states.

The geometrical significance, on the other hand, arises from the fact that this asymptotic
value is expected when the base manifold is compact, but not “a priori” for the non-compact
M = SL(2, C). The compactresultis adirect consequence of the Hirzebruch-Riemann—Roch
formula and the Kodaira vanishing theor§sj, and can be stated as follows:

On a compact Kéhler 2n-manifold of volurfge the Hilbert space of holomorphic quan-
tization has finite complex dimensicand this grows asymptotically a8/(2xh)" when
7 — 0F.

We are thus led to the following questions:

e Question 1. Is there a version of the above result for the non-compact case?

Our results suggest that there is, since(BIC) is not compact and some of the
G-invariant metrics for whiclCorollary 2. 7holds—for example the lump metric—cannot
be compactified.

Another example is the manifold with any U(1)-invariant Kahler metrig. In this
case the Kahler form also had/gl)-invariant global potential—which we ca—and
Hpoly is the space of square-integrable complex polynomial€ avith respect to the
volume form exp—p/2k)(i/2)90p. A simplified version of the method used in this paper
then shows that, if the volum@ of (C, g) and the dimension @ oy are both finite, we
also have

dimcHpoly ~ $2/(27h) ash — 0%,

In an optimistic spirit, we are thus led to formulate the following question.

e Question 2. Let S be a closed complex submanifold 6" (i.e. a Stein manifold) of
complex dimension < N, and letw be any Kahler form ot§. SinceS is Stein,w has a
global potentiap € C*°(S; R), and we can define

Hpoly = {(p € Clz1,...,znN]: / |¢|Ze_p/2’7w” < +oo} )
N

Then, if the volume? of (M, w) and the dimension df{,.1y are both finite, is it always
true that dimxHpoly ~ $2/(27h)" ash — 0*?
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Having in mind our examples, itis also possible that the result only holds for algebraic
submanifolds ofCY. Another point which would be worth to clarify is the relation
between the spacégyoly andHg.

e Question 3. Inour example of SI2, C) with aG-invariant Kéhler metric of finite volume,
is it true that whenevek poly is finite-dimensional we havH poly = Hng? And for more
general Stein manifolds of finite volume?

Recall that the finite-dimensionality &fpo)y comes from the fact that the only polynomials

on C* which are integrable on S, C), are the ones of degree smaller than a certain
constant. The above question asks if, in this case, the entire non-polynomial functions on
C* are automatically non-integrable on @.C). It is plausible that the answer is yes,
since entire non-polynomial functions have very high growth rates in certain directions.
However, if the answer is no, then perhaps in this case it is wiser to7igkg as the
quantum Hilbert space, instead of the traditiohalg. The finite-dimensionality 0¥ poly
ensures completeness addrollary 2.7supports this choice.

2.6. Proof ofProposition 2.3
The“only if” statementWe have to show that
/ p12 e/ Ze < too (28)
M

implies condition(24). Notice first that if 28)is satisfied, the “change of variables” theorem
guarantees that for any of tite-action biholomorphismg, : M — M

/|¢|Ze—(foy)/2f7€:[ |¢owg|2e_(foy)/2/7e,
M M

where we have used tl@-invariance of the volume forra. So using the invariant (Haar)
integral onG to average over the group, we get that

fM g2 e /o0 Fhe = fM ( f G|¢owg|2) e (/0/Zhe (29)
ge

Now regardp(z1, ... , z4) as a polynomial oi©4, and writeg = ¢g + - - - + ¢, wheregy
is homogeneous of degréeAs in Appendix A consider also the natural extension of the
G-actiony to the manifoldC* c M. We then have

!
/G|¢>owg(z)|2= S Gt o v,
g€

k,j=0"8€C

where each term of the sum is a smoé6tknvariant function onC#. In particular, using
the notation andProposition A.4of Appendix A each of these terms may be written as
Fij(x(2), w(z)), whereFj : B — C is continuousx(z) = (Iz1)> + -+ + |z4/%/2 and
w(z) = z124 — z2z3. On the other hand, going back to the definition/ofwve see that each
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component o/, (z) is just a linear combination of the components pfnd so in fact we
must have

Fi(x(z), w(z)) = /

ge

(¢k¢j) © ¢g(Z) = Z Cil...iklll...njzil ce Zikznl ce an-
G

From this formula it is clear that, for arlye Rg

Fg(2x(2)), 22w () = Fig(x(.2), w(A2)) = A Fg(x(2), w(2)),
and in particular

x_lej(x, 1 = x_l+(k+j)/2ij(1, x_l).
Sincek, j < I, using the continuity of; we then obtain that

ETOO xRgx, ) = lim X_H(k”)/szj(l, x7Y) = 8wy Fi (1, 0).

X xX—> 400

Defining

1
h(x(2), w(2)) = / G|¢>owg(z)|2= > Fx(2). w),

8€ k,j=0

we therefore have that
I
; —1 _ ; o _
Jim xh 1) = > Jim_ 27 Ry 1) = FiL.0), (30)
k,j=0

Now, it will be shown inLemma 2.8that 0 < Fj (1, 0) < +o0, and so(30) implies that
there is a constamt> 0 such thak(x, 1) > c¥ for x big enough. On the other hand, using
(29), Proposition 1.8&f Section 1.4and thatw(z) = 1 andx(z) = cosh(y(z)) forz € M,
we have

/ |¢,|2 e*(fOY)/ZF,E:/ h(x(2), w(z)) g (fon/2h
M zeM
7.[3

+00 —d
_ 10/ 93
32A? /O h(coshy,1)e dy[f MI7dy
> const 4+ —— f+oo(coshy)’ e‘f(y)/ﬁg[f’(y)]%y
- 2413 Jo dy ’

where const. is some finite real number. From this inequality it is clear(2@implies
condition(24) of Proposition 2.3

Lemma 2.8. The constanfj (1, 0) isin]0, +ool.

Proof. As we have seen abovg : B — C is continuous and, by definition

Fi(x(2), w(2)) = / ) (31)

4SS



J.M. Baptista/Journal of Geometry and Physics 50 (2004) 1-27 23

Since(1, 0) € B (seeAppendix A), Fj (1, 0) is a well-defined finite number, and frofd1)
itis clearly non-negative. Now call := {z € C*: z1z4 — z2z3 = 0}, and letg be any point
in W\{0}. Sinceq’ := x(¢)~Y?q € Vandx(¢') = 1, we have

/ 1 0 Ve ()1 = Fi(x(q), w(@)) = Fi(L,0).
geG

Hence, if Fji(1,0) = 0, we get thay; o Y,(¢') = 0 for anyg € G, and in particular
¢1(¢") = 0. But¢; is homogeneous, and so algdg) = 0. From the arbitrariness af
it follows that ¢; vanishes oiv—the zero set of the irreducible polynomialkz4 — z2z3.
Finally from Hilbert's Nullstellensatz we conclude th@tis divisible byz1z4 — z2z3. This
contradicts the hypothesis Bfoposition 2.3and therefore (1, 0) > 0.

The"if” statementAs before, writep = ¢o + - - - + ¢;. Then|g|? < |¢ol® + - - - + |1[%.
Sincex(z) = (Jz1|? + - - + |z4]9/2, we have thatzi| < +/2x(z) for all z. But ¢ is
homogeneous of degrge< [, thus

19;(2)12 < c;(2x(2)) < ¢;j(2x(2))!, zeC?

for some positive constants. Callingc = lezo ¢, usingProposition 1.&f Section 1.4
and thatv(z) = coshy(z) for z € M, we finally get

I
/ p> e VoD Phe <3 / ;12 =0 e < / c(2x(2))! e Fon/2he
M j=0vM eM

6217'[3 400 —d
= _ byl e~ /2 21313 dy.
32T /O (coshy)' e 0|y[f (»]°dy
From this inequality it is clear that conditid@4) of Proposition 2.3mplies (28), and so
¢ [S Hp0|y. O
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Appendix A

In this appendix we study the actignof the groupG := SU(n) x SU(n) on the manifold
M, C) ~ c’ of complexn x n matrices defined by

VG x M@n,C)— M@n,C), (U1, Uz, A) b U1AU, . (A.1)
The results obtained are used3ections 1.2 and 2.4

According to[7, p. 396]every matrixM € GL(n, C) can be decomposed in the form
M = KAK',wherek, K’ € U(n) andA is real diagonal with positive entries in the diagonal.
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Notice that multiplyingk and K’ by permutation matrices, if necessary, we may assume
that the diagonal entries af do not decrease with the row index.

LemmaA.l. Every matrixM € M(n, C) may be decomposed in the fomh= U;AU, €°,
whereU1, U, € SU(n), 6 € R, and A is a real diagonal matrix with non-negative diagonal
entries which do not decrease with the row index

Proof. GivenM e M(n, C) there is a sequendd/;} in GL(n, C) with M; — M. Using
the decomposition described above, for eathwe have

M;= K./AQ/K;.

Since the sequencéXk ;} and{K}} are in the compact groufi(n), there are convergent
subsequencek, — K andK’;, — K’ whenl — +oo, wherek, K’ € U(n). Defining

A=K = oim g Tm )T = i a;,

the fact thatd ;, is diagonal with positive ordered diagonal entries, implies st diago-
nal with non-negative ordered diagonal entries; furthernkod&’ = M. Sincek, K’ €
U(n), they can always be written as matrices in (8Jtimes a phase, and this ends
the proof. O

We will now find functions oV (r, C) which separate the orbits ¢f, and hence can be
used as coordinates in the space of orbits. For this define the polynaPiatsM (n, C)
by

det(B+AD) = Y A/ Pi(B).
j=0
We then have the following proposition.

Proposition A.2. Two matricesM, N € M(n, C) lie in the same orbit ofy if and only if
P;MTM) = PyNTN) for 1 < j < n anddetN = detM.

Proof. If N andM are in the same orbit, i.&f = U1MU> for someU+, U, € SU®n), then
NN = UZTMTMuz, and the stated conditions are clearly satisfied.
Conversely, suppose thB}(NTN) = P,-(MTA@ forl < j < nanddetM = detN.Then

NTN andmT M have the same characteristic polynomial, and hence the same eigenvalues.
On the other hand, frohemma A.1we have the decompositions

M = U'diagrs, ..., 2)UE? and N = U'diagii, ..., i) U €P, (A.2)
SO

MM = UTdiagn2, ... 22U and NTN = 0Tdiagi2, ... 720
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have eigenvalugs.?, ... , A2} and{32, ... , A2}, respectively. Sinceemma A.1also guar-
antees that the;, % ; are non-negative and ordered, we concludeithat i ;forl < j < n.
Hence

N =0U'U)MUtT 0.

If detM = detN # O, then taking the determinant of the above equation we get that
dete®9) = 1, and so €97 is in SUn). This shows thaiv = U;MU5 for some
U1, Uz € SUn).
If detM = detN = 0, then(A.2) implies that the product of the; is zero, therefore
A = A1 = 0, because thie; are non-negative and ordered. Defining

A = diage @A =D dB=0 dB=0) c SUm)
we then get
N = U'diaga, ... , AU P = U'diaging, ... , A) AU €Y = U'(U)"IMUtAT,

which shows that, also in this cagé,= U1MU> for someUy, U, € SU(n). O

These results are now going to be used in the study-ofvariant functions o(2, C)
and SL(2, C). Define the smooth map

B:MRC)~C'>RxC, AR = xR, wk).
where
x(2) = 3(z1lP + -+ 124> and w(z) = 2124 — 2223.

It follows from the proposition above that two pointsMy(2, C) lie in the samej-orbit iff
they have the same image ByIn particular anyG-invariant functionz on M(2, C) may
be written = h o 8, whereh is some function defined on the imagefWe will now
show that the continuity of implies the continuity o — a result used itsection 2.4

LemmaA.3. TheimageoffisB:={(a,u) e R x C:a > |ul}.

Proof. From the identity
x(2)% — lw@)I? = 21z + 1221 — |z31% — 124152 + |2275 + 2274* = O,

it follows thatx(z) > |w(z)|, thus the image o8 is contained ir.
Conversely, defining : B : C* by

-1/2 1/2
gla,u) = <u <a+,/a2—|u|2> ,0,0, <a+,/a2—|u|2) ), (A.3)

one can easily check thgto g(a, u) = (a, u), and sa3 contains the image ¢. O

Proposition A.4. Let X be atopological spac® a subset of the image gfands : V — X
a map such thak o g is continuous o8~1()). Then h is continuous
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Proof. Consider the map : B — C* defined in(A.3). This map is clearly continuous on
B\{(0, 0)} and, for(a, u) approaching the origin from this set

im |—2% < iim L —o
@=©0 | [ JZ 2 (@) (0,0) /a
Thusg is also continuous &0, 0) and vanishes at this point. Finally, since
h(a,u) = (hop)ogla,u) forall(a,u) eV,

we conclude that the continuity éfo g implies the continuity of:. O

Now suppose we restrict the actigrof G to the submanifold S2, C) ¢ M(2, C). Since
the functionw(z) is identically 1 on SI2, C), we have that two points in this submanifold
lie in the same/-orbit iff they have the same image byz). FromLemma A.3it follows
thatx(SL(2, C)) = [1, +o0[, and since cosh? is injective on this interval, we have that
y := cosh™! o x also separates orbits in &, C). We can now provéroposition 1.1of
Section 1.2

Proof of Proposition 1.1. Fromthe paragraph above, itis clear that any smaothvariant
function f on SL(2, C) may be written ag’ = f o y, for some uniquef : [0, +oo[— R.
Now consider the smooth mdp: R — SL(2, C) defined by

) — cosh(z/2) sinh(z/2)
0= sinh(t/2) cosh(:/2) |

One can easily check thato A(t) = ¢ for t > 0, hence

fO=(foy)oh()=foh(), t=0,

which implies thatf is smooth. Note also thatis defined orR, and from theG-invariance
of f we getf o h(—t) = f o h(2); thus f can be extended to an even functionn 0O
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