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Abstract

The group SU(2)×SU(2)acts naturally on SL(2,C)by simultaneous right and left multiplication.
We study the Kähler metrics invariant under this action using a global Kähler potential. The volume
growth and various curvature quantities are then explicitly computable. Examples include metrics
of positive, negative and zero Ricci curvature, and the one-lump metric of theCP1-model on a
sphere.

We then look at the holomorphic quantization of these metrics, where some physically satisfactory
results on the dimension of the Hilbert space can be obtained. These give rise to an interesting
geometrical conjecture, regarding the dimension of this space for general Stein manifolds in the
semi-classical limit.
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1. Part I

1.1. Introduction

Among the geometrical procedures for quantization, holomorphic quantization is a par-
ticularly simple and natural one, and can be used whenever the classical system “lives” on a
complex Kähler manifold. In this paper the complex manifold under study will be SL(2,C),
and we will consider the Kähler metrics on this manifold which are invariant under a natural
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action of the group SU(2) × SU(2), namely the action defined by simultaneous right and
left multiplication of the matrix in SL(2,C) by the matrices in SU(2).

In the first part of the paper a purely classical study of these Kähler metrics is carried
out. We find that each of these metrics has a global invariant Kähler potential, which is
essentially unique, and is in fact a function of only one real variable. We then use this
potential to compute explicitly several properties of the Kähler manifold. These include the
scalar curvature, a potential for the Ricci form, the volume and volume growth, the geodesic
distance from the submanifold SU(2) ⊂ SL(2,C), and a simple criterion for completeness.
Choosing particular functions as Kähler potentials we get metrics with positive-definite,
negative-definite and zero Ricci tensor; the Ricci-flat one being just the usual Stenzel metric
onT ∗S3 � SL(2,C).

A significant application of the above results, which was in fact the original motivation
for this paper, is a closer study of theL2-metric on the moduli space of one-lump on a
sphere. These lumps are a particular kind of soliton that appear inCP1-sigma models, and
have been widely studied[2,13]. In particular, the special case of one-lump on a sphere
has been studied by Speight in[10,11], where the author also examines general invariant
Kähler metrics on SL(2,C) and finds some of the results mentioned above. The approach
there however is rather different, since it is based on the choice of a particular frame for
T ∗SL(2,C), instead of using the perhaps more natural Kähler potentials.

The second part of the paper examines some aspects of holomorphic quantization on
the manifold SL(2,C) with the Kähler metrics described above. We basically look at two
things: the nature and dimension of the quantum Hilbert space, and the quantum operators
corresponding to the classical symmetries of the metric.

Regarding the latter point, we start by finding the moment map of the SU(2) × SU(2)
action. This map encodes the classical symmetries of the system and, through the usual
prescriptions of geometric quantization, subsequently enables us to give an explicit formula
for the operators corresponding to these symmetries. Regarding the first point, i.e. the
dimension of the Hilbert space, the story is a bit more involved, and we will now spend a
few lines describing the motivation and the results.

If you apply holomorphic quantization to a compact Kähler 2n-manifold, it is a conse-
quence of the Hirzebruch–Riemann–Roch formula that the dimension of the Hilbert space
is finite and grows asymptotically asΩ/(2πh̄)n whenh̄→ 0, whereΩ is the volume of the
manifold. This result is also physically interesting, since it agrees with some predictions
of semi-classical statistical mechanics. Trying to see what happens on the non-compact
SL(2,C) with our invariant metrics, we were thus led to compute the dimension of the
Hilbert space. The results obtained can be summarized as follows.

The Hilbert spaceHHQ in our setting is essentially the space of square-integrable holo-
morphic functions on SL(2,C), where square-integrable means with respect to some metric-
dependent measure on SL(2,C). Furthermore all these holomorphic functions can be seen
as restrictions of holomorphic functions onC

4 ⊃ SL(2,C). Defining the subspaceHpoly ⊆
HHQ of the holomorphic functions which are restrictions of polynomials inC

4, we then
find that dimHpoly ∼ Ω/(2πh̄)3 ash̄ → 0 whenever both members are finite. The exact
dimension ofHpoly, which we also compute, depends on the particular invariant metric one
puts on SL(2,C); its asymptotic behaviour however does not. This leads us to conjecture
that, as in the compact Kähler case, also for general Stein manifolds (i.e. complex subman-
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ifolds of C
N ) this asymptotic behaviour of dimHpoly is “universal”—see the discussion of

Section 2.5.

1.2. The invariant Kähler metrics

We start by considering the action of the groupG := SU(2) × SU(2) on the complex
manifoldM := SL(2,C) defined by

ψ : G×M → M, (U1, U2, A) 
→ U1AU−1
2 . (1)

This is clearly a smooth action which acts onM through biholomorphisms. A detailed
study ofψ and its orbits is done inAppendix A. For example one finds there that all the
orbits except one have real dimension 5, the exceptional one being SU(2) ⊂ M, which has
dimension 3. For the purposes of this section, however, it is enough to quote the following
result.

Proposition 1.1. Any smoothG-invariant functionf̃ : M → R can be written as a
compositionf ◦ y, wherey : M → [0,+∞[ is defined byy(A) = cosh−1[(1/2)tr(A†A)],
andf : R → R is a smooth even function.

We are now interested in studying Kähler metrics and forms overM. To begin with, the
well known diffeomorphismM � S3 × R

3 implies that the de Rham cohomology ofM
andS3 are the same. In particular every closed two-form onM is exact. On the other hand,
regardingC4 as the set of 2×2 complex matrices, we have thatM is the hypersurface given
as the zero set of the polynomialA 
→ 1− detA. Since the derivative of this polynomial is
injective on the zero set,M is a complex submanifold ofC4. It then follows from standard
results in complex analysis of several variables (see Theorems 5.1.5, 5.2.10 and 5.2.6 of[6])
thatM is a Stein manifold with Dolbeault groupsHp,q(M) = 0 (except forp = q = 0).

From all this we get the following lemma.

Lemma 1.2. Any closed(1,1)-formω onM can be writtenω = (i/2)∂∂̄f̃ , wheref̃ is a
smooth function on M. If ω is real, thenf̃ can also be chosen real.

Proof. This is just like the usual proof of the local∂∂̄-lemma. As argued above, the closeness
of ω implies its exactness, henceω = dψ = ∂ψ0,1+ ∂̄ψ1,0 for someψ ∈ H1(M,C). Since
∂ψ0,1 = ∂̄ψ1,0 = 0 (becauseω is a (1,1)-form) andH1,0(M) = H0,1(M) = 0, we have that
ψ0,1 = ∂̄f1 andψ1,0 = ∂f2 for some smooth functionsfj onM. Definingf̃ = 2i(f2−f1)

we thus getω = (i/2)∂∂̄f̃ . If ω = (i/2)∂∂̄f̃ is real, then(1/2)(f̃ + c.c.) is a real potential
for ω. �

Having done this preparatory work, we now head on to the main result of this section.

Proposition 1.3. Supposeω ∈ Ω1,1(M;R) is a closedG-invariant form. Then one can
always writeω = (i/2)∂∂̄(f ◦ y), where f and y are as inProposition 1.1and f ◦ y is
smooth. The function f is unique up to a constant. Furthermore, the hermitian metric on M
associated withω is positive-definite ifff ′ > 0 on ]0,+∞[ andf ′′ > 0 on [0,+∞[.
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Proof. By the previous lemmaω = (i/2)∂∂̄f̃ for somef̃ ∈ C∞(M;R). Now, for any
g ∈ G, theG-invariance ofω and the holomorphy ofψg imply that

ω = ψ∗
gω = ψ∗

g

i

2
∂∂̄f̃ = i

2
∂∂̄(f̃ ◦ ψg).

Hence by averaging overg ∈ G if necessary (recall thatG is compact), one may assume that
the potential̃f isG-invariant. The first part of the result then follows fromProposition 1.1.

To establish the second part, recall that the associated hermitian metric is defined by

H(·, ·) = ω(·, J ·)− iω(·, ·), (2)

whereJ is the complex structure onM. Since bothω andJ areG-invariant (the last one
becauseψg is holomorphic), we conclude that alsoH is G-invariant. Now consider the
complex submanifoldΛ ⊂ M consisting of the diagonal matrices inM. It follows from
Lemma A.1of Appendix AthatΛ intersects every orbit ofψ. Hence, by theG-invariance,
H is positive-definite onM iff it is positive-definite at every point ofΛ. To obtain the
condition for positiveness overΛ we now use a direct computation.

Take the neighbourhoodU := {A ∈ M : A11 �= 0} and the complex chartε ofM defined
by

ε : U→ C
∗ × C

2, ε−1(z1, z2, z3) =



z1 z2

z3
1+ z2z3
z1


 . (3)

Note thatΛ ⊂ U and thatε is a chart ofM adapted toΛ. Definingx(A) = tr(A†A)/2 we
have thaty = cosh−1(x) and

x ◦ ε−1(z) = 1
2(|z1|2 + |z2|2 + |z3|2 + |1+ z2z3|2/|z1|2).

A direct calculation using the chain rule now shows that, on a point diag(z1, z
−1
1 ) ∈ Λ, we

have

ω = i

2
∂∂̄(f ◦ y) = i

2

[
f ′′(y)
|z1|2 dz1 ∧ dz̄1 + f ′(y)

2 sinh(y)
(dz2 ∧ dz̄2 + dz3 ∧ dz̄3)

]
, (4)

and hence

H = f ′′(y)
|z1|2 dz1 ⊗ dz̄1 + f ′(y)

2 sinh(y)
(dz2 ⊗ dz̄2 + dz3 ⊗ dz̄3). (5)

Thus at points ofΛ such thaty > 0 (i.e. |z1| �= 1), we have sinh(y) > 0 and the
positive-definiteness ofH is equivalent tof ′(y), f ′′(y) > 0. On the other hand, sinceH
and the chart are defined over all ofΛ, continuity implies that at a point ofΛ with y = 0
(i.e. |z1| = 1) we must have

H = f ′′(0)dz1 ⊗ dz̄1 + 1
2f

′′(0)(dz2 ⊗ dz̄2 + dz3 ⊗ dz̄3),
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where it was used that

lim
y→0+

f ′(y)
sinh(y)

= lim
y→0+

f ′(y)
y

= f ′′(0).

Thus at this point the positive-definiteness ofH is equivalent tof ′′(0) > 0. This establishes
the last part of the proposition.

To end the proof we finally note that formula(5) implies the uniqueness off ′(y), and
hence the uniqueness off up to a constant. �

Roughly speaking, this proposition guarantees the existence ofG-invariant potentials for
G-invariant Kähler forms. A particular feature of these potentials, which will be crucial for
the explicit calculations later on, is that they are entirely determined by their values on the
diagonal matrices, since every orbit of theG-action contains one of these. Having this in
mind, we now end this section by presenting a technical lemma which will prove useful on
several occasions.

Lemma 1.4. Supposẽf is a smoothG-invariant function on M, and consider the subman-
ifold Λ = diag(z1, z

−1
1 ) : z1 ∈ C

∗ of diagonal matrices in M. If h = h(|z1|) is a smooth

function onΛ such that∂∂̄h = ∂∂̄f̃ |Λ, then2f̃ (z1) = h(z1) + h(z−1
1 ) + const., on the

submanifoldΛ.

Proof. The hypothesis is that∂2h/∂z1∂z̄1 = ∂2f̃ /∂z1∂z̄1 onΛ. Writing z1 ∈ C
∗ asz1 =

r eiθ and using the expression for the laplacian in polar coordinates, we have

0 = ∂2(f̃ − h)
∂z1∂z̄1

= 1

4
&(f̃ − h) = 1

4

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂

∂θ2

)
(f̃ − h).

But theG-invariance implies that̃f only depends onr; since the same is assumed forh, we
get (

∂2

∂r2
+ 1

r

∂

∂r

)
(f̃ − h) = 0 ⇒ f̃ − h = A logr + B.

Now,G-invariance also implies that̃f(z1) = f̃ (z−1
1 ), thus

2f̃ (z1)= f̃ (z1)+ f̃ (z−1
1 ) = h(z1)+ h(z−1

1 )+ A(log|z1| + log|z1|−1)+ 2B

= h(z1)+ h(z−1
1 )+ 2B. �

1.3. Curvature and completeness

Throughout this sectionω will be the Kähler form of aG-invariant Kähler metric onM.
Thus according toProposition 1.3we can write

ω = 1
2(i)∂∂̄(f ◦ y), (6)

wheref ◦ y is smooth andf satisfies all the conditions ofProposition 1.3.
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The first task now is to calculate the Ricci formρ associated to this Kähler metric. More
precisely, we will obtain a potential forρ expressed in terms of the functionf .

Proposition 1.5. The Ricci form of the metric with Kähler formω is given by

ρ = −i ∂∂̄ log

[(
f ′(y)

sinh(y)

)2

f ′′(y)

]
.

Proof. The G-invariance of the metric implies theG-invariance of the Ricci formρ.
Thus, byProposition 1.3, ρ has a globalG-invariant potential̃ρ. Now consider the chart
(U, z1, z2, z3) forM defined in the proof of the same proposition. According to a standard
result, if in this chart

ω|U = (i/2)hαβ̄ dzα ∧ dz̄β,

then the Ricci form is given by

ρ|U = −i∂∂̄log(dethαβ̄).

In particular, over the complex submanifoldΛ of diagonal matrices we have

(i/2)∂∂̄ρ̃|Λ = ρ|Λ = −i∂∂̄log(dethαβ̄)|Λ.
But (5) gives ushαβ̄ overΛ, and so we compute that

log(dethαβ̄)|Λ = log

(
1

|z1|2
(
f ′(y)

2 sinhy

)2

f ′′(y)

)
.

Since this function only depends on|z1|, by Lemma 1.4we get that

ρ̃|Λ = −2 log

((
f ′(y)
sinhy

)2

f ′′(y)

)
+ const.

Finally theG-invariance ofρ̃ guarantees that this expression is valid all overM. Thus we
conclude thatρ = (i/2)∂∂̄ρ̃ has the stated form. �

The next step is the computation of the scalar curvature. Note that theG-invariance of
the metric implies theG-invariance of this function.

Proposition 1.6. The scalar curvature of the Riemannian metric associated with the Kähler
formω is

s = 2

f ′′(f ′)2
d

dy

(
(f ′)2

d

dy
log

(
sinh2y

f ′′(f ′)2

))
.

Proof. Let us callg(y) := log( sinh2y/f ′′(f ′)2), so thatρ = i∂∂̄(g ◦ y). The same calcu-
lations that led to formula(4) now give

ρ|Λ = i

(
g′′

|z1|2 dz1 ∧ dz̄1 + g′

2 sinhy
(dz2 ∧ dz̄2 + dz3 ∧ dz̄3)

)
. (7)
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Writing ω = (i/2)hαβ̄ dzα ∧ dz̄β andρ = (i/2)rαβ̄ dzα ∧ dz̄β, the scalar curvature of the

associated Riemannian metric iss = 2hαβ̄rαβ̄. Thus using(4) and (7)we can compute the
restriction ofs to the submanifoldΛ:

s|Λ = 2
g′′

f ′′
+ 4

g′

f ′
= 2

f ′′(f ′)2
d

dy
((f ′)2g′). (8)

TheG-invariance ofs then shows that this formula is valid all overM. �

In the last part of this section we will make contact with a paper by Patrizio and Wong
[9]: this will give us almost for free some results about the completeness of theG-invariant
metric associated toω.

To make contact one just needs to note that the linear transformation onC
4 defined by

the matrix


1 0 0 −i

0 1 −i 0

0 −1 −i 0

1 0 0 i




takes the standard hyperquadricQ4 = {w ∈ C
4 :
∑
w2
k = 1} toM, and the norm function

‖w‖2 onQ4 to the functionx(A) = tr(A†A)/2 onM. Therefore all the results in[9] valid
for (Qn, ‖w‖2) can be restated here for(M, x). In particular we have that

(1) The functiony = cosh−1x is plurisubharmonic exhaustion onM, and solves the
homogeneous Monge–Ampère equation onM−y−1(0) = M−SU(2) [9, Theorem 1.2].

(2) Supposẽf = f ◦ y is a strictly plurisubharmonic function onM. Then with respect to
the metric defined by(i/2)∂∂̄f̃ , the distance inM between the level sets{y = a} and
{y = b ≥ a} is [9, Therorem 3.3]

D(a, b) = 1√
2

∫ f(b)

f(a)

√
− (f

−1)′′(t)
(f−1)′(t)

dt = 1√
2

∫ b

a

√
f ′′(y)dy. (9)

Furthermore, the distance-minimizing geodesics between these level sets are the integral
curves of the vector fieldX/‖X‖, whereX is the gradient vector field of̃f (one can
check directly thatX �= 0 onM − SU(2)).

As a consistency check, we remark that the strict plurisubharmonicity off̃ = f ◦ y
together withProposition 1.3guarantees thatf ′′(y) > 0 on [0,+∞[= y(M); thus the
integral formula for the distance is well-defined. It is now more or less straightforward to
prove the following proposition.

Proposition 1.7. The metric on M with Kähler formω is complete if and only if

D(0,+∞) = 1√
2

∫ +∞

0

√
f ′′(y)dy = +∞.
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Proof. By Hopf–Rinow, the metric is complete iff the closed bounded sets of(M,ω) are
compact. So suppose thatD(0,+∞) = +∞ and thatB is a closed and bounded subset of
M. Then forb big enough we have

D(0, b) > sup
x∈B
D(0, y(x))⇒ B ⊂ y−1([0, b]) = x−1([1, coshb]).

But x is just the usual norm onC4 restricted toM, thusB is also closed and bounded inC
4,

and so is compact.
Conversely, ifD(0,+∞) < +∞, thenM itself is a closed bounded set which is not

compact, and thus the metric is incomplete. �

1.4. Volume and integration

The purpose of this section is to study the integrals over(M,ω) ofG-invariant functions,
whereω is as in(6). More precisely, we want to prove the following result.

Proposition 1.8. Let h̃ be a smoothG-invariant function on M, which byProposition 1.1
can be writtenh̃ = h ◦ y, and letMr be the open submanifoldy−1([0, r[) ⊂ M. Then we
have that∫

Mr

h̃
ω3

3!
= π3

3

∫ r

0
h(y)

d

dy
(f ′(y))3 dy. (10)

Notice thatω3/3! is the volume form of the metric onM associated withω, so with the
particular choicēh ≡ 1 we get the volume ofMr. Remark also that with̃h ≡ 1 ors, wheres
is the scalar curvature given byProposition 1.6, the integral on the right-hand side is trivially
computable. Thus taking into account the restrictions onf imposed byPropositions 1.1
and 1.3, one gets the following corollary.

Corollary 1.9. For the Kähler metric on M associated withω, the volume ofMr and the
integral of the scalar curvature overMr are, respectively

1

3
(πf ′(r))3 and 2π3

(
f ′(y)2

d

dy
log

(
sinh2y

f ′′(y)f ′(y)2

))
y=r
.

In particular M has finite volume ifff ′(r) is bounded.

We now embark on the Proof ofProposition 1.8. To start with, it will be convenient to
restate here some results used in[10,11] to study the lump metric.

Consider the Pauli matrices

τ1 =
[

0 1

1 0

]
, τ2 =

[
0 −i

i 0

]
, τ3 =

[
1 0

0 −1

]
,

so that{(i/2)τa} is a basis for the Lie algebra su(2). Associated to each(i/2)τa is a
left-invariant one-formσa on SU(2), and{σa} is a global trivialization of the cotangent
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bundle of SU(2). Then according to[10,11]and the references therein we have that:

• There is a diffeomorphismX : SU(2)× R
3 → M defined by

X(U, !λ) = U
(√

1+ λ2I + !λ · !τ
)
, with λ = |!λ|.

• The usual actionψ of G onM is taken byX to the actionψ̃ on SU(2)× R
3 given by

ψ̃(U1,U2)(U,
!λ) = (U1UU−1

2 ,RU2(
!λ)), (11)

whereR : SU(2) → SO(3) is the usual double covering; explicitlyRU2 ∈ SO(3) has

components(RU2)ab = (1/2)tr(τaU2τbU
†
2 ).

• Regarding theσa and the dλa as one-forms defined over SU(2)× R
3, the actionψ̃ acts

on these forms bỹψ∗
(U1,U2)

(!σ,d!λ) = (RU2 !σ,RU2d!λ).
• The Euler angles(β, α, γ) ∈]0,4π[×]0, π[×]0,2π[ define an oriented chart of SU(2)

with dense domain such that, on this domain

σ1 = − sinγ dα+ cosγ sinαdβ, σ2 = cosγ dα+ sinγ sinαdβ,

σ3 = cosαdβ + dγ. (12)

The plan now is to use the diffeomorphismX to compute the integrals on SU(2)×R
3, instead

ofM. Since the{σa, λa} trivialize the cotangent bundle of SU(2)×R
3, the pull-back byX

of the volume form onM can be written

µ := X∗ω
3

3!
= µ̂(U, !λ)σ1 ∧ σ2 ∧ σ3 ∧ dλ1 ∧ dλ2 ∧ dλ3

for some non-vanishing function̂µ on SU(2) × R
3. Moreover,µ must be invariant under

ψ̃, because the volume form onM is invariant underψ. But notice now that, under̃ψ

!σ 
→ RU2 !σ ⇒ σ1 ∧ σ2 ∧ σ3 
→ det(RU2)σ1 ∧ σ2 ∧ σ3 = σ1 ∧ σ2 ∧ σ3,

becauseRU2 ∈ SO(3). For the same reason, also dλ1 ∧ dλ2 ∧ dλ3 is invariant, and hence
σ1 ∧ σ2 ∧ σ3 ∧ dλ1 ∧ dλ2 ∧ dλ3 is invariant too. This fact together with the invariance ofµ

implies the invariance of the function̂µ. From the formula(11) for the actionψ̃ it is then
clear thatµ̂ only depends onλ = |!λ|.

The computation of the function̂µ(λ) is now straightforward. First we have

µ̂(λ)=µ(Id,0,0,λ)
(

i

2
τ1,

i

2
τ2,

i

2
τ3,

∂

∂λ1
,
∂

∂λ2
,
∂

∂λ3

)

= 1

6
(ω3)X(Id,0,0,λ)

(
X∗
(

i

2
τ1

)
, . . . ,X∗

∂

∂λ3

)
.

On the other hand, using the chart(3) and (4), at the pointq(λ) := X(Id,0,0, λ) =
diag(

√
1+ λ2 + λ,√1+ λ2 − λ) ofM we also have

1

6
(ω3)q(λ) =

(
i

2

)3
f ′′(y)(√

1+ λ2 + λ
)2

(
f ′(y)

2 sinhy

)
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ dz3 ∧ dz̄3.
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Finally a tedious calculation that we will not reproduce shows that

(dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ dz3 ∧ dz̄3)q(λ)

(
X∗
(

i

2
τ1

)
, . . . ,X∗

∂

∂λ3

)

= 4i
√

1+ λ2
(√

1+ λ2 + λ
)2
,

and so we get

µ̂(U, !λ) = µ̂(λ) =
√

1+ λ2

8

(
f ′(y ◦ X)

sinh(y ◦ X)
)2

f ′′(y ◦ X).

Having calculated the volume form on SU(2)×R
3, the rest of the proof ofProposition 1.8

goes on smoothly.
Call as usualx(A) = tr(A†A)/2 andy = cosh−1(x). A quick calculation shows that

x ◦ X(U, !λ) = 1+ 2λ2, and so we have an explicit relationy = y(λ). From this relation it
is clear thatX−1(Mr) = SU(2) × Bl, whereBl is the open ball, centered at the origin of
R

3, with radiusl such that 1+ 2l2 = coshr. Hence, for any invariant functioñh = h ◦ y
onM we have∫

Mr

h̃
ω3

3!
=
∫
X−1(Mr)

(h̃ ◦ X)µ

=
∫

SU(2)×Bl
(h · µ̂)(y(λ))σ1 ∧ σ2 ∧ σ3 ∧ dλ1 ∧ dλ2 ∧ dλ3

=
(∫

SU(2)
σ1 ∧ σ2 ∧ σ3

)∫ l

0
(h · µ̂)(y(λ))4πλ2 dλ.

Using the value of̂µ(λ) and the relationy = y(λ), a change of variables in the last integral
shows that it coincides with

π

16

∫ r

0
h(y)f ′′(y)(f ′(y))2 dy.

The first integral can be computed using(12). Namely we have∫
SU(2)

σ1 ∧ σ2 ∧ σ3 =
∫ 2π

0

∫ π

0

∫ 4π

0
sinαdβ dαdγ = 16π2.

Putting these two results together we finally obtain the formula stated inProposition 1.8.

1.5. Examples

1.5.1. The one-lump metric
The so-called moduli space of degree one-lump on a sphere, which we will callM, is

just the group of rational mapsS2 → S2. IdentifyingS2 � CP1, this group is the same as
the group of projective transformations

PGL(2,C) = GL(2,C)/C∗ = SL(2,C)/{±1}.
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In the physics literature,M is the space of minimal energy static solutions of the sigma-model
defined on the Lorentzian spacetimeS2 × R with S2 as target space. The kinetic energy
functional of this sigma-model induces a certain Riemannian metric onM, which is also
very natural geometrically. It can be defined in the following way.

Let wt : CP1 → CP1 be a one-parameter family of projective transformations, i.e. a
curve onM, and callw′

0 its tangent vector att = 0. For eachx ∈ CP1, t 
→ wt(x) is a curve
in CP1, and we callv(x) ∈ Tw0(x)CP

1 its tangent vector att = 0. Then the Riemannian
metricg onM is defined by

g(w′
0, w

′
0) :=

∫
x∈CP1

h(v(x), v(x)) volh, (13)

whereh is the Fubini–Study metric onCP1 and volh is the associated volume form. In
informal terms, one may say that the squared-length of an infinitesimal curvet 
→ wt
in (M, g) is just the average overx ∈ CP1 of the squared-lengths of the infinitesimal
curvest 
→ wt(x) in (CP1, h); thus the measure of “displacement” inM is how much the
image points ofwt are moved. Using the fact that transformations inPSU(2) ⊂ PGL(2,C)
are isometries of (CP1, h), it is not difficult to check that right and left multiplication in
PGL(2,C) by elements ofPSU(2) are in fact isometries of(M, g).

Now consider the usual chart of the projective spaceCP1\{[0,1]} → C, [1, z] 
→ z, and
let (u1, u2, u3) be any complex chart ofM defined on a neighbourhood of the pointw0. In
these charts we have

w′
0 = duj

dt
(0)

∂

∂uj
, v(z) = d

dt
wt(z) = d

dt
wu(t)(z) = ∂

∂uj
(wu(z))

duj

dt
(0)
∂

∂z
,

h

(
∂

∂z
,
∂

∂z

)
= h11̄ = ∂2

∂z∂z̄
log(1+ |z|2), volh = i

2

dz ∧ dz̄

(1+ |z|2)2 ,

where the last two equalities are standard properties of the Fubini–Study metric. Calling
ρ := log(1+ |z|2) the local potential of the Fubini–Study metric we get

g(w′
0, w

′
0)=

∫
z∈C

∂2ρ

∂z∂z̄
(w0(z))

∂(wu(z))

∂uj

duj

dt

∂(w̄u(z))

∂ūk

dūk

dt

i

2

dz ∧ dz̄

(1+ |z|2)2

= duj

dt

dūk

dt

∫
z∈C

∂2

∂uj∂ūk
[ρ(wu(z))]

i

2

dz ∧ dz̄

(1+ |z|2)2

= duj

dt

dūk

dt

∂2

∂uj∂ūk

i

2

∫
z∈C

ρ[wu(z)]
dz ∧ dz̄

(1+ |z|2)2 .

Since this equation is valid in any chart(uk) ofM, we conclude that the function

a(w) := i

2

∫
z∈C

log(1+ |w(z)|2) dz ∧ dz̄

(1+ |z|2)2
is a global Kähler potential for the Kähler form onM associated with the Riemannian
metricg. Calling this formω, we thus haveω = (i/2)∂∂̄a.

It turns out, however, that the integral defininga(w) is difficult to compute for a general
ω ∈ PGL(2,C), and so we cannot calculate the potential directly. To circumvent this
obstacle we proceed in the following way.
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Firstly, using the double coverπ : SL(2,C)→ PGL(2,C), we work on the more palpable
group SL(2,C). Notice thatπ∗ω = (i/2)∂∂̄(a ◦ π), becauseπ is holomorphic. Moreover,
the invariance ofg andω by right and left multiplication by elements ofPSU(2), implies
thatπ∗ω is invariant by the usual actionψ of the groupG on SL(2,C). Thus we are on
familiar ground. FromProposition 1.3we get thatπ∗ω = (i/2)∂∂̄f̃ , for someG-invariant
function f̃ . The plan now is to computẽf using the potentiala(w) andLemma 1.4.

In fact, for a diagonal matrixA = diag(ξ, ξ−1) one can compute that

a ◦ π(A)= i

2

∫
z∈C

log

(
1+

∣∣∣∣ zξ2
∣∣∣∣
2
)

dz ∧ dz̄

(1+ |z|2)2

= 2π
∫ +∞

0
log

(
1+ r2

|ξ|4
)

r

(1+ r2)2 dr = π log|ξ|4
|ξ|4 − 1

,

and since

∂∂̄(a ◦ π)|Λ = −2i(π∗ω)|Λ = ∂∂̄f̃ |Λ,
from Lemma 1.4we get that

2f̃ |Λ = 2π
|ξ|4 + 1

|ξ|4 − 1
log|ξ|2.

Now using the formulasx(A) = tr(A†A)/2 = (|ξ|2+|ξ|−2)/2 andy = cosh−1(x), a little
algebra shows that, overΛ ⊂ SL(2,C)

f̃ = π x√
x2 − 1

log
(
x+

√
x2 − 1

)
= πy cothy. (14)

TheG-invariance of̃f finally guarantees that this formula is valid all over SL(2,C). We have
thus obtained an explicit potential for the Kähler formπ∗ω. Notice thatf̃ (A) = f̃ (−A)
for any matrix in SL(2,C), and sof̃ descends to a function on PGL(2,C); this will be a
potential for the Kähler formω on this space.

Using the potential functioñf and the results of the previous sections, we will now
derive a series of properties of the metricg. Except for the volume and the Ricci potential
computations, which are new, these properties were already obtained in[11], using different
methods.

Substituting expression(14) into Propositions 1.5 and 1.6, we obtain a potential for the
Ricci form and the scalar curvature in(M, π∗ω). The first is

ρ̃(y) = −2 log(y coshy − sinhy)( sinh 2y − 2y)2/( sinhy)9,

and the second has a rather long expression which we will not transcribe. The plot of this
expression, however, coincides with the one in[11] (actually it seems to be one half of the
one in[11], but this must be due to different conventions), and thus the scalar curvature is a
positive increasing function ofy that diverges at infinity. It is worthwhile noting that, for this
metric, the positiveness of the scalar curvature actually comes from the positive-definiteness
of the Ricci tensor, as can be seen by applyingProposition 1.3to the potential̃ρ. Using
the criterion ofProposition 1.7one may also easily verify that the metricg is incomplete.
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Finally, from Corollary 1.9, and introducing a factor 1/2 to account for the double cover
(M, π∗g)→ (M, g), we obtain that the volume of the moduli space is

vol(M, g) = 1
6π

6.

1.5.2. Other metrics
We will briefly mention here other examples ofG-invariant metrics onM; these are

interesting for their curvature properties.
First of all it is clear fromProposition 1.5that any solution of

d

dy
(f ′(y))3 = c( sinhy)2, c > 0,

will give rise to a Ricci-flat metric onM. This metric coincides with the Stenzel metric on
TS3 � SL(2,C) [12], as can be seen by using the correspondenceM↔ Q4 described in
Section 1.3and comparing with Section 7 of[12]. It is a complete metric.

Experimenting with other even functionsf(y) one can find metrics with a wide range of
behaviours. For example it follows fromPropositions 1.7, 1.5 and 1.3that the metrics defined
by f(y) = y2 andf(y) = coshy are complete and have, respectively, positive-definite and
negative-definite Ricci tensor. The last one is just the induced metric by the natural inclusion
M ⊂ C

4. The first one has also the pleasant property that the parametery is precisely the
geodesic distance from the submanifold SU(2) ⊂ M, and so the volume ofMr grows
exactly with the cube of this distance (see(9) andCorollary 1.9).

2. Part II: Holomorphic quantization

2.1. Introduction

In the second part of the paper we want to study the holomorphic quantization of the
Kähler manifolds (SL(2,C), ω), whereω is anyG-invariant Kähler form. We will firstly
obtain the quantum operators corresponding to the classical symmetries of the system. After
that we will compute the dimension of the Hilbert space of the quantized system. This last
calculation takes a bit of work, but in the end we find some physically satisfactory results,
as described inSection 1.1.

2.2. The classical moment map

Recall the actionψ : G×M → M described inSection 1.1, and supposeω = (i/2)∂∂̄(f ◦
y) is anyG-invariant Kähler form onM (seeProposition 1.3). Then, tautologically,ψ is a
symplectic action on(M,ω). SinceG is a compact semi-simple Lie group, general results
state that there is a unique moment mapµ : M → g∗ associated with this action. We will
now give an explicit formula forµ.

Proposition 2.1. For anym ∈ M and(a, b) ∈ g = su(2)⊕ su(2) we have

µ(a, b) = i

4

f ′(y)
sinhy

tr(mm†a−m†mb),
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wheresu(2) is identified with the space of2× 2 anti-hermitian matrices, andy = y(m) is
the function defined inSection 1.1.

Proof. Sinceω = −dα, whereα = (i/2)∂(f ◦ y) is aG-invariant one-form onM, a well
known result[1, Theorem 4.2.10]states that the moment map satisfies

µ(m)[X] = αm(X#) (15)

for anym ∈ M andX ∈ g, whereX# is the vector field onM generated by the one-parameter
group of biholomorphismsψexp(tX) : M → M. Explicitly, for any(a, b) ∈ g = su(2)⊕su(2)
one can compute

(a, b)#m = d

dt
(etame−tb)t=0 = am− mb, (16)

where we regardTmM ⊂ TmGL(2,C) � M(2,C).
On the other hand, for eachm ∈ M\SU(2), the formulaỹ := cosh−1((1/2)trA†A)

gives a local extension ofy to a neighbourhood inM(2,C) of m. SinceM is a complex
submanifold ofM(2,C) � C

4, it is then true that∂(f ◦ ỹ)|TmM = ∂(f ◦ y)m. Applying
these formulas we thus get

αm[(a, b)#] = i

2
f ′(y)

4∑
k=1

∂ỹ

∂zk
dzk(am− mb)

= i

2
f ′(y)

4∑
k=1

1

2 sinhy
z̄k(m)dzk(am− mb)

= i

4

f ′(y)
sinhy

2∑
k,l=1

m̄kl(am− mb)kl = i

4

f ′(y)
sinhy

tr(m†am−m†mb). (17)

Sinceα and (a, b)# are smooth onM, this formula can be extended by continuity from
M\SU(2) toM. It coincides with the formula in the statement because of the cyclic property
of the trace. �

Remark. Although we will not reproduce the calculations here, a number of properties of
the moment mapµ can be obtained quite straightforwardly. For example, with respect to
the norm on su(2)∗ ⊕ su(2)∗ induced by the norm−tr a2 on su(2), one has

‖µ(m)‖2 = 1

4
f ′(y(m))2,

µ(M) =
{
(a, b) ∈ su(2)∗ ⊕ su(2)∗ : ‖a‖ = ‖b‖ ∈

[
0,

1

2
√

2
f ′(+∞)

[ }
.

The moment map obtained above associates to eachX ∈ g a functionµ(·)[X] ∈ C∞(M). In
the framework of geometric quantization this function is regarded as a classical observable,
and the quantization procedure associates to it a certain hermitian operator on the quantum
Hilbert space. This correspondence is the subject of the next section.
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2.3. Holomorphic quantization

In this section we want to study the quantization of the classical phase space(M,ω).
We will use holomorphic quantization, which is the simplest and most natural quantization
procedure on a Kähler manifold. Refinements such as the metaplectic correction will be left
out. For background material consult for example[14].

We start with prequantization. Since the Kähler formω = (i/2)∂∂̄(f ◦y) is exact onM, the
trivial line-bundleB := M × C with the canonical hermitian metric((m,w1), (m,w2)) =
w1w̄2 is a prequantum bundle. Now consider the natural unitary trivialization of this bundle
m 
→ (m,1), and the connection∇ onB defined by the one-form

θ = 1

4h̄
(∂̄ − ∂)(f ◦ y)

with respect to this trivialization. The curvature form of∇ is dθ = −ih̄−1ω and, since
θ is pure imaginary, the connection is compatible with the hermitian metric(·, ·). Thus
according to the definitions in[14] (B, (·, ·),∇) is the prequantum data.

The step from prequantization to quantization is made by choosing a polarization on
M. SinceM is Kähler the natural choice here is the holomorphic polarization, that is, the
polarization spanned by the tangent vectors∂/∂zk. With this choice, a sectionm 
→ ϕ(m) =
(m, ϕ̃(m)) of B is polarized iff∇0,1ϕ = 0, where∇0,1 denotes the anti-holomorphic part
of the connection. But

∇0,1ϕ = ∂̄ϕ̃ + ϕ̃θ0,1 = ∂̄ϕ̃ + 1

4h̄
ϕ̃∂̄(f ◦ y) = 0 ⇔ ϕ̃ = φ e−(f◦y)/4h̄, (18)

whereφ is any holomorphic function onM. Thus the space of polarized sections ofB can
be identified with the space of smooth functions onM of the form(18).

The final step to construct the quantum Hilbert space is to define an inner product of
polarized sections. This is done by the formula

〈ϕ1, ϕ2〉 =
∫
M

(ϕ1, ϕ2)ε =
∫
m

φ1φ̄2 e−(f◦y)/2h̄ε, (19)

whereε := (2πh̄)−3ω3/3! differs from the metric volume form on(M,ω) by the factor
(2πh̄)−3. The quantum Hilbert space of holomorphic quantization, which we denoteHHQ,
is then defined as the space of polarized sections ofB of finite 〈·, ·〉-norm (see[14]).

For a better understanding of this Hilbert space, one should get a clearer picture of the
holomorphic functionsφ onM. This picture is provided by the next proposition. Since its
proof is rather out of context and may easily be skipped, we defer the proof to the end of
the section.

Proposition 2.2. RegardM = SL(2,C) as the zero set inC4 of the polynomialD(z) =
z1z4 − z2z3 − 1. Then the natural restriction is an isomorphism between the rings of
holomorphic functionsO(C4)/J andO(M), where J is the ideal ofO(C4) generated by
D(z).

In other words, this proposition states that every holomorphic function onM is the
restriction of a holomorphic function onC4, and furthermore two holomorphic functions
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on C
4 restrict to the same function onM iff their difference is divisible byD(z). We thus

get a characterization of holomorphic functions onM in terms of entire functions onC4,
which have a global power series expansion and are generally much better understood.

For the rest of this section we will look at operators onHHQ. If h ∈ C∞(M) is a classical
observable, geometric quantization associates to it an operatorĥ onHHQ defined by

ĥ(ϕ) = ih̄∇Yhϕ + hϕ ∀ϕ ∈ HHQ, (20)

whereYh is the vector field onM defined byιYhω = dh (a warning: in[14] the field
Yh is defined with the opposite sign). This observable-operator correspondence does not
always work, however, because sometimes the resulting operatorĥ takes polarized sections
into non-polarized ones. To prevent this, one further demands that the flow ofYh should
preserve the polarization, i.e. the flow should be locally holomorphic. Thus in principle
not all observablesh ∈ C∞(M) can be “quantized” by this method. It can be shown,
however, that if this condition is fulfilled then̂h is a self-adjoint operator in the Hilbert
space(HHQ, 〈·, 〉) (see[14] and review[3]).

We will now apply formula(20) to the observables coming from the classical symme-
tries of(M,ω), that is to the functionsµX := µ(·)[X] ∈ C∞(M) described in the previous
section. Notice that, by definition of moment map, for eachX ∈ g the vector fieldYµX
is exactlyX#—the vector field generated by the one-parameter group of biholomorphisms
ψexp(tX) : M → M. In particular the flow ofYµX , which isψexp(tX), preserves the holomor-
phic polarization, and so formula(20)may be applied toµX.

Putting together(18), (20) and (15)we get

µ̂Xϕ= ih̄∇X#ϕ + µXϕ = ih̄[(dϕ)(X#)+ ϕθ(X#)] + α(X#)ϕ

= ih̄

[
(dφ)(X#)− 1

4h̄
φd(f ◦ y)(X#)+ 1

4h̄
φ(∂̄ − ∂)(f ◦ y)(X#)

]
e−(f◦y)/4h̄

+ i

2
∂(f ◦ y)(X#)ϕ = ih̄(∂φ)(X#)e−(f◦y)/4h̄. (21)

For an even more explicit formula, supposeX = (a, b) ∈ su(2)⊕su(2) and thatφ ∈ O(M)
is the restriction of a certaiñφ ∈ O(C4). Then using(16) and the fact thatM is a complex
submanifold ofC4

(∂φ)m(X
#) =

4∑
k=1

∂φ̃

∂zk
(m)zk(am− mb), (22)

wherezk(am− mb) stands for the entryzk of the matrixam− mbunder the identification
M(2,C) � C

4. Formulas(21) and (22)thus give an explicit description of the operatorµ̂X

onHHQ.

Proof of Proposition 2.2. Let AC4 andAM be the sheaves of germs of holomorphic
functions onC

4 andM, respectively. By Theorem 7.15 of[6] these are coherent analytic
sheaves. Furthermore, calling̃AM the trivial extension toC4 of the sheafAM overM, it
follows from theorems IV-D8 and VI-B5 of[4] thatÃM is still coherent analytic and has
the same cohomology asAM .
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Consider now the short sequence of sheaves overC
4:

0 → AC4
D̃−→AC4

r−→ÃM → 0, (23)

whereD̃ is the map induced by local multiplication by the polynomialD(z) andr is defined
by

r|U(f) =
{

0 if U ∩M = ∅
f |U∩M otherwise

∈ Γ(U, ÃM)

for every open setU in C
4 and everyf ∈ Γ(U,AC4). It is not difficult to check that(23) is

in fact an exact sequence. (Succinctly,D̃ is injective because the stalks ofAC4 are integral
domains;r is surjective becauseM is a complex submanifold ofC4; kerr ⊆ im D̃ by the
Nullstellensatz for germs of varieties and the irreducibility ofD(z).)

We therefore obtain an exact sequence of cohomology groups

0 → H0(C4,AC4)→ H0(C4,AC4)→ H0(M,AM)→ 0,

where we have used thatHp(C4, ÃM) � Hp(M,AM) and that, by Cartan’s theorem B
[4, p. 243], H1(C4,AC4) = 0. Since the zeroth cohomology groups are just the global
sections of the respective sheaf and, under this identification, the first and second maps
are, respectively, multiplication byD(z) and the natural restriction, we finally obtain
that

O(M) = Γ(M,AM) � Γ(C4,AC4)

D(z) · Γ(C4,AC4)
= O(C4)/J. �

2.4. Dimension of the Hilbert space

In this last section of the paper we will be concerned with the dimension of the quantum
Hilbert space associated with the Kähler manifold(M,ω). More specifically, using the
identification of the previous section

HHQ �
{
φ ∈ O(M) = O(C4)/J :

∫
M

|φ|2 e−(f◦y)/2h̄ε < +∞
}
,

let Hpoly be the subspace ofHHQ consisting of the holomorphic functions that can be
represented by polynomials inC4. Then we will be able to compute the dimension ofHpoly
in terms of the Kähler potentialf . Furthermore, when(M,ω) has finite volumeΩ andHpoly
has finite dimension, we will show that dimCHpoly ∼ Ω/(2πh̄)3 ash̄→ 0+. These results
are finally discussed in Questions 1–3.

The main step towards proving the stated results is the following proposition, which will
be proved at the end of this section.

Proposition 2.3. Let φ be a holomorphic function on M that can be represented by a
polynomial inC

4, of degree l, whose homogeneous term of highest degree is not divisible
by z1z4 − z2z3. Thenφ is inHpoly if and only if



18 J.M. Baptista / Journal of Geometry and Physics 50 (2004) 1–27∫ +∞

0
( coshy)l e−f(y)/2h̄

d

dy
[f ′(y)]3 dy < +∞. (24)

Using this proposition the dimension ofHpoly can be computed quite straightforwardly.
In fact, assuming that{l ∈ N : (24) is satisfied} is not empty (which will be shown to be
true when(M,ω) has finite volume), and callingm ∈ N ∪ {+∞} the maximum of this set,
we have the following corollary.

Corollary 2.4. The complex dimension ofHpoly is (m+ 1)(m+ 2)(2m+ 3)/6.

Proof. Let Pl ⊂ O(C4) be the subspace of homogeneous polynomials of degreel, and
P≤m, the space⊕0≤l≤mPl. CallingX : O(C4) → O(M) the natural homomorphism, let
alsoX| be the restriction ofX to P≤m.

By Proposition 2.3we have thatHpoly = X(P≤m), thus

dimHpoly = dim(P≤m)− dim(kerχ|) = dim(P≤m)− dim(P≤m ∩ kerX).

But Proposition 2.2states that kerX is the ideal inO(C4) generated byz1z4 − z2z3 − 1,
and so it is clear that the linear map

P≤m−2 → P≤m ∩ kerX, Q(z) 
→ (z1z4 − z2z3 − 1) ·Q(z)
is an isomorphism. Hence dim(P≤m ∩ kerX) = dim(P≤m−2), and dimHpoly = dim(Pm⊕
Pm−1). But it is a well known combinatorial fact that dimPm—the number of ways of
choosing four non-negative integers whose sum ism—is(

3+m
3

)
,

and the result follows directly. �

In practice, by looking at the asymptotics of the potentialf , it is usually not difficult to
compute the integerm.

Example 2.5. The lump metric onM studied inSection 1.5has a Kähler formπ∗ω =
(i/2)∂∂̄(f ◦ y), with f(y) = πy cothy, and finite volumeΩ = π6/3. From the asymptotics

f(y) = πy[1 + 2 e−2y + 2 e−4y +O(e−6y)] asy→ +∞,
one gets that

( coshy)l e−f(y)/2h̄
d

dy
[f ′(y)]3 = O(y e(−π/2h̄+l−2)y) asy→ +∞,

and som = max{l ∈ N : l < 2+ π/2h̄}.
An interesting feature of this example is that, if we let ¯h→ 0+, thenm ∼ π/2h̄, and by

Corollary 2.4 we obtain

dimCHpoly ∼ m3

3
∼ π3

24h̄3
= Ω

(2πh̄)3
.
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This is exactly the answer expected in semi-classical quantum mechanics for the quan-
tization of a phase space of volumeΩ and real dimension 6[8]. Before discussing the
significance of this coincidence, we will first show that this property is more general, and
is in fact valid for all theG-invariant Kähler metrics onM of finite volume.

Proposition 2.6. Supposeω = (i/2)∂∂̄(f ◦ y) is the Kähler form of a metric on M of finite
volumeΩ. Then the constantm = m(f, h̄) satisfies

(3Ω)1/3

2πh̄
+ k − 1 ≤ m ≤ (3Ω)1/3

2πh̄
+ k,

where

k = k(f) := sup

{
λ ∈ R

+
0 :

∫ ∞

0
eλy

d

dy
[f ′(y)]3 dy is finite

}
∈ [0,+∞].

Proof. By Corollary 1.9we have that

Ω = π3

3

∫ +∞

0

d

dy
[f ′(y)]3 dy = π3

3
lim

y→+∞ [f ′(y)]3, (25)

thus the finite volume condition implies thatk ≥ 0 and thatD := limy→+∞f ′(y) is a
positive finite number. By L’Ĥopital’s rule we also get that limy→+∞y−1f(y) = D. It then
follows that, forβ real

lim
y→+∞ (e

−y coshy)lexp

{[
β − 1

2h̄

(
f(y)

y
−D

)]
y

}
=
{
+∞ if β > 0,

0 if β < 0.
(26)

Now, by definition,m is the biggest of the integersl ∈ N such that∫ +∞

0
( coshy)l e−f(y)/2h̄

d

dy
[f ′(y)]3 dy (27)

converges. This integral, however, is the same as∫ +∞

0

{
(e−y coshy)lexp

[
β − 1

2h̄

(
f(y)

y
−D

)
y

]}
e(−β+l−D/2h̄)y

d

dy
[f ′(y)]3 dy.

If l − D/2h̄ > k, then choosingβ in the interval ]0, l − D/2h̄ − k[ and using(26) and
the definition ofk, it is clear that(27) diverges; thusm ≤ k + D/2h̄. If l − D/2h̄ < k,
then choosingβ in ]l − D/2h̄ − k,0[, the same arguments show that(27) converges;
thusm ≥ k + D/2h̄ − 1. Since from(25) we haveD = (3Ω)1/3/π, the proposition is
proved. �

Corollary 2.7. Given any G-invariant Kähler metric on M of finite volumeΩ, let ω =
(i/2)∂∂̄(f ◦y) be its Kähler form. Then the associated quantum spaceHpoly is finite-dimen-
sional iffk(f) is finite. In this casedimCHpoly ∼ Ω/(2πh̄)3 ash̄→ 0+.

Proof. It follows directly fromCorollary 2.4andProposition 2.6. �
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Remark. The lump metric is an example with finite volume and finite-dimensionalHpoly.
There are however metrics of finite volume with infinite-dimensionalHpoly. For example,

definef ′(t) as any extension oft 
→ (1− e−t2), t ∈ [1,+∞[, to a smooth odd function on
R with everywhere positive first derivative. Then callingf any primitive off ′, the metric
onM with Kähler potentialf ◦ y has the desired property.

2.5. Discussion

The asymptotic valueΩ/(2πh̄)3 for the complex dimension of the quantum Hilbert space
is both physically and geometrically quite significant. Physically because semi-classical
statistical mechanics predicts that if you quantize a classical system withn degrees of
freedom, thus with 2n-dimensional phase space, you should get one independent quantum
state of the system for each cell of volume(2πh̄)n on the phase space[8]. Hence if the
phase space has finite volumeΩ, one getsΩ/(2πh̄)n independent quantum states.

The geometrical significance, on the other hand, arises from the fact that this asymptotic
value is expected when the base manifold is compact, but not “a priori” for the non-compact
M = SL(2,C). The compact result is a direct consequence of the Hirzebruch-Riemann–Roch
formula and the Kodaira vanishing theorem[5], and can be stated as follows:

On a compact Kähler 2n-manifold of volumeΩ, the Hilbert space of holomorphic quan-
tization has finite complex dimension, and this grows asymptotically asΩ/(2πh̄)n when
h̄→ 0+.

We are thus led to the following questions:

• Question 1. Is there a version of the above result for the non-compact case?
Our results suggest that there is, since SL(2,C) is not compact and some of the

G-invariant metrics for whichCorollary 2.7holds—for example the lump metric—cannot
be compactified.

Another example is the manifoldC with anyU(1)-invariant Kähler metricg. In this
case the Kähler form also has aU(1)-invariant global potential—which we callρ—and
Hpoly is the space of square-integrable complex polynomials onC with respect to the
volume form exp(−ρ/2h̄)(i/2)∂∂̄ρ. A simplified version of the method used in this paper
then shows that, if the volumeΩ of (C, g) and the dimension ofHpoly are both finite, we
also have

dimCHpoly ∼ Ω/(2πh̄) ash̄→ 0+.

In an optimistic spirit, we are thus led to formulate the following question.
• Question 2. Let S be a closed complex submanifold ofC

N (i.e. a Stein manifold) of
complex dimensionn ≤ N, and letω be any Kähler form onS. SinceS is Stein,ω has a
global potentialρ ∈ C∞(S;R), and we can define

Hpoly :=
{
φ ∈ C[z1, . . . , zN ] :

∫
S

|φ|2 e−ρ/2h̄ωn < +∞
}
.

Then, if the volumeΩ of (M,ω) and the dimension ofHpoly are both finite, is it always
true that dimCHpoly ∼ Ω/(2πh̄)n ash̄→ 0+?
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Having in mind our examples, it is also possible that the result only holds for algebraic
submanifolds ofCN . Another point which would be worth to clarify is the relation
between the spacesHpoly andHHQ.

• Question 3. In our example of SL(2,C)with aG-invariant Kähler metric of finite volume,
is it true that wheneverHpoly is finite-dimensional we haveHpoly = HHQ? And for more
general Stein manifolds of finite volume?

Recall that the finite-dimensionality ofHpoly comes from the fact that the only polynomials
on C

4 which are integrable on SL(2,C), are the ones of degree smaller than a certain
constant. The above question asks if, in this case, the entire non-polynomial functions on
C

4 are automatically non-integrable on SL(2,C). It is plausible that the answer is yes,
since entire non-polynomial functions have very high growth rates in certain directions.
However, if the answer is no, then perhaps in this case it is wiser to takeHpoly as the
quantum Hilbert space, instead of the traditionalHHQ. The finite-dimensionality ofHpoly
ensures completeness andCorollary 2.7supports this choice.

2.6. Proof ofProposition 2.3

The“only if” statement. We have to show that∫
M

|φ|2 e−(f◦y)/2h̄ε < +∞ (28)

implies condition(24). Notice first that if(28)is satisfied, the “change of variables” theorem
guarantees that for any of theG-action biholomorphismsψg : M → M∫

M

|φ|2 e−(f◦y)/2h̄ε =
∫
M

|φ ◦ ψg|2 e−(f◦y)/2h̄ε,

where we have used theG-invariance of the volume formε. So using the invariant (Haar)
integral onG to average over the group, we get that∫

M

|φ|2 e−(f◦y)/2h̄ε =
∫
M

(∫
g∈G

|φ ◦ ψg|2
)

e−(f◦y)/2h̄ε. (29)

Now regardφ(z1, . . . , z4) as a polynomial onC4, and writeφ = φ0 + · · · + φl, whereφk
is homogeneous of degreek. As in Appendix A, consider also the natural extension of the
G-actionψ to the manifoldC4 ⊂ M. We then have

∫
g∈G

|φ ◦ ψg(z)|2 =
l∑

k,j=0

∫
g∈G
(φ̄kφj) ◦ ψg(z),

where each term of the sum is a smoothG-invariant function onC4. In particular, using
the notation andProposition A.4of Appendix A, each of these terms may be written as
Fkj(x(z), w(z)), whereFkj : B → C is continuous,x(z) = (|z1|2 + · · · + |z4|2)/2 and
w(z) = z1z4 − z2z3. On the other hand, going back to the definition ofψ, we see that each
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component ofψg(z) is just a linear combination of the components ofz, and so in fact we
must have

Fkj(x(z), w(z)) =
∫
g∈G
(φ̄kφj) ◦ ψg(z) =

∑
ci1...ikn1...nj z̄i1 . . . z̄ik zn1 . . . znj .

From this formula it is clear that, for anyλ ∈ R
+
0

Fkj(λ
2x(z)), λ2w(z)) = Fkj(x(λz), w(λz)) = λk+jFkj(x(z), w(z)),

and in particular

x−lFkj(x,1) = x−l+(k+j)/2Fkj(1, x
−1).

Sincek, j ≤ l, using the continuity ofFkj we then obtain that

lim
x→+∞ x

−lFkj(x,1) = lim
x→+∞ x

−l+(k+j)/2Fkj (1, x
−1) = δlkδljFll (1,0).

Defining

h(x(z), w(z)) :=
∫
g∈G

|φ ◦ ψg(z)|2 =
l∑

k,j=0

Fkj(x(z), w(z)),

we therefore have that

lim
x→+∞ x

−lh(x,1) =
l∑

k,j=0

lim
x→+∞ x

−lFkj(x,1) = Fll (1,0). (30)

Now, it will be shown inLemma 2.8that 0< Fll (1,0) < +∞, and so(30) implies that
there is a constantc > 0 such thath(x,1) > cxl for x big enough. On the other hand, using
(29), Proposition 1.8of Section 1.4, and thatw(z) = 1 andx(z) = cosh(y(z)) for z ∈ M,
we have∫

M

|φ|2 e−(f◦y)/2h̄ε=
∫
z∈M

h(x(z), w(z))e−(f◦y)/2h̄ε

= π3

3(2πh̄)3

∫ +∞

0
h( coshy,1)e−f(y)/2h̄

d

dy
[f ′(y)]3 dy

≥ const.+ c

24h̄3

∫ +∞

0
( coshy)l e−f(y)/2h̄

d

dy
[f ′(y)]3 dy,

where const. is some finite real number. From this inequality it is clear that(28) implies
condition(24)of Proposition 2.3.

Lemma 2.8. The constantFll (1,0) is in ]0,+∞[.

Proof. As we have seen aboveFll : B→ C is continuous and, by definition

Fll (x(z), w(z)) =
∫
g∈G

|φ|2 ◦ ψg(z). (31)
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Since(1,0) ∈ B (seeAppendix A), Fll (1,0) is a well-defined finite number, and from(31)
it is clearly non-negative. Now callV := {z ∈ C

4 : z1z4− z2z3 = 0}, and letq be any point
in V\{0}. Sinceq′ := x(q)−1/2q ∈ V andx(q′) = 1, we have∫

g∈G
|φl ◦ ψg(q′)|2 = Fll (x(q

′), w(q′)) = Fll (1,0).

Hence, ifFll (1,0) = 0, we get thatφl ◦ ψg(q′) = 0 for anyg ∈ G, and in particular
φl(q

′) = 0. But φl is homogeneous, and so alsoφl(q) = 0. From the arbitrariness ofq
it follows thatφl vanishes onV—the zero set of the irreducible polynomialz1z4 − z2z3.
Finally from Hilbert’s Nullstellensatz we conclude thatφl is divisible byz1z4 − z2z3. This
contradicts the hypothesis ofProposition 2.3, and thereforeFll (1,0) > 0.

The“ if” statement. As before, writeφ = φ0 + · · · + φl. Then|φ|2 ≤ |φ0|2 + · · · + |φl|2.
Sincex(z) = (|z1|2 + · · · + |z4|2)/2, we have that|zk| ≤ √

2x(z) for all z. But φj is
homogeneous of degreej ≤ l, thus

|φj(z)|2 ≤ cj(2x(z))j ≤ cj(2x(z))l, z ∈ C
4

for some positive constantscj. Callingc = ∑l
j=0 cj, usingProposition 1.8of Section 1.4

and thatx(z) = coshy(z) for z ∈ M, we finally get

∫
M

|φ|2 e−(f◦y)/2h̄ε≤
l∑
j=0

∫
M

|φj|2 e−(f◦y)/2h̄ε ≤
∫
z∈M

c(2x(z))l e−(f◦y)/2h̄ε

= c2lπ3

3(2πh̄)3

∫ +∞

0
( coshy)l e−f(y)/2h̄

d

dy
[f ′(y)]3 dy.

From this inequality it is clear that condition(24) of Proposition 2.3implies (28), and so
φ ∈ Hpoly. �
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Appendix A

In this appendix we study the actionψ of the groupG := SU(n)×SU(n) on the manifold
M(n,C) � C

n2
of complexn× n matrices defined by

ψ : G×M(n,C)→ M(n,C), (U1, U2, A) 
→ U1AU−1
2 . (A.1)

The results obtained are used inSections 1.2 and 2.4.
According to[7, p. 396]every matrixM ∈ GL(n,C) can be decomposed in the form

M = KAK′, whereK,K′ ∈ U(n) andA is real diagonal with positive entries in the diagonal.
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Notice that multiplyingK andK′ by permutation matrices, if necessary, we may assume
that the diagonal entries ofA do not decrease with the row index.

Lemma A.1. Every matrixM ∈ M(n,C)may be decomposed in the formM = U1AU2 eiθ,
whereU1, U2 ∈ SU(n), θ ∈ R, and A is a real diagonal matrix with non-negative diagonal
entries which do not decrease with the row index.

Proof. GivenM ∈ M(n,C) there is a sequence{Mj} in GL(n,C) with Mj → M. Using
the decomposition described above, for eachMj we have

Mj = KjAjK′
j.

Since the sequences{Kj} and{K′
j} are in the compact groupU(n), there are convergent

subsequencesKjl → K andK′
jl
→ K′ whenl→ +∞, whereK,K′ ∈ U(n). Defining

A := K†M(K′)† = lim
l→+∞

(Kjl )
†Mjl(K

′
jl
)† = lim

l→+∞
Ajl ,

the fact thatAjl is diagonal with positive ordered diagonal entries, implies thatA is diago-
nal with non-negative ordered diagonal entries; furthermoreKAK′ = M. SinceK,K′ ∈
U(n), they can always be written as matrices in SU(n) times a phase, and this ends
the proof. �

We will now find functions onM(n,C) which separate the orbits ofψ, and hence can be
used as coordinates in the space of orbits. For this define the polynomialsPj onM(n,C)
by

det(B + λI) =
n∑
j=0

λjPj(B).

We then have the following proposition.

Proposition A.2. Two matricesM,N ∈ M(n,C) lie in the same orbit ofψ if and only if
Pj(M

†M) = Pj(N†N) for 1 ≤ j ≤ n anddetN = detM.

Proof. If N andM are in the same orbit, i.e.N = U1MU2 for someU1, U2 ∈ SU(n), then

N†N = U†
2M

†MU2, and the stated conditions are clearly satisfied.

Conversely, suppose thatPj(N†N) = Pj(M†M) for 1 ≤ j ≤ nand detM = detN. Then

N†N andM†M have the same characteristic polynomial, and hence the same eigenvalues.
On the other hand, fromLemma A.1we have the decompositions

M = U ′diag(λ1, . . . , λn)U eiθ and N = Ũ ′diag(λ̃1, . . . , λ̃n)Ũ eiβ, (A.2)

so

M†M = U†diag(λ2
1, . . . , λ

2
n)U and N†N = Ũ†diag(λ̃2

1, . . . , λ̃
2
n)Ũ
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have eigenvalues{λ2
1, . . . , λ

2
n} and{λ̃2

1, . . . , λ̃
2
n}, respectively. SinceLemma A.1also guar-

antees that theλj, λ̃j are non-negative and ordered, we conclude thatλj = λ̃j for 1 ≤ j ≤ n.
Hence

N = Ũ ′(U ′)−1MU−1Ũ ei(β−θ).

If detM = detN �= 0, then taking the determinant of the above equation we get that
det(ei(β−θ)I) = 1, and so ei(β−θ)I is in SU(n). This shows thatN = U1MU2 for some
U1, U2 ∈ SU(n).

If detM = detN = 0, then(A.2) implies that the product of theλj is zero, therefore
λ1 = λ̃1 = 0, because theλj are non-negative and ordered. Defining

Λ := diag(ei(θ−β)(n−1),ei(β−θ), . . . ,ei(β−θ)) ∈ SU(n)

we then get

N = Ũ ′diag(λ1, . . . , λn)Ũ eiβ = Ũ ′diag(λ1, . . . , λn)ΛŨ eiθ = Ũ ′(U ′)−1MU−1ΛŨ,

which shows that, also in this case,N = U1MU2 for someU1, U2 ∈ SU(n). �

These results are now going to be used in the study ofG-invariant functions onM(2,C)
and SL(2,C). Define the smooth map

β : M(2,C) � C
4 → R × C, β(z) = (x(z), w(z)),

where

x(z) = 1
2(|z1|2 + · · · + |z4|2) and w(z) = z1z4 − z2z3.

It follows from the proposition above that two points inM(2,C) lie in the sameψ-orbit iff
they have the same image byβ. In particular anyG-invariant functionh̃ onM(2,C) may
be writtenh̃ = h ◦ β, whereh is some function defined on the image ofβ. We will now
show that the continuity of̃h implies the continuity ofh− a result used inSection 2.4.

Lemma A.3. The image ofβ isB := {(a, u) ∈ R × C : a ≥ |u|}.

Proof. From the identity

x(z)2 − |w(z)|2 = 1
4(|z1|2 + |z2|2 − |z3|2 − |z4|2)2 + |z1z̄3 + z2z̄4|2 ≥ 0,

it follows thatx(z) ≥ |w(z)|, thus the image ofβ is contained inB.
Conversely, definingg : B : C

4 by

g(a, u) =
(
u

(
a+

√
a2 − |u|2

)−1/2

,0,0,

(
a+

√
a2 − |u|2

)1/2
)
, (A.3)

one can easily check thatβ ◦ g(a, u) = (a, u), and soB contains the image ofβ. �

Proposition A.4. Let X be a topological space,V a subset of the image ofβ, andh : V→ X

a map such thath ◦ β is continuous onβ−1(V). Then h is continuous.
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Proof. Consider the mapg : B→ C
4 defined in(A.3). This map is clearly continuous on

B\{(0,0)} and, for(a, u) approaching the origin from this set

lim
(a,u)→(0,0)

∣∣∣∣∣∣
u√

a+
√
a2 − |u|2

∣∣∣∣∣∣ ≤ lim
(a,u)→(0,0)

a√
a
= 0.

Thusg is also continuous at(0,0) and vanishes at this point. Finally, since

h(a, u) = (h ◦ β) ◦ g(a, u) for all (a, u) ∈ V,
we conclude that the continuity ofh ◦ β implies the continuity ofh. �

Now suppose we restrict the actionψ ofG to the submanifold SL(2,C) ⊂ M(2,C). Since
the functionw(z) is identically 1 on SL(2,C), we have that two points in this submanifold
lie in the sameψ-orbit iff they have the same image byx(z). FromLemma A.3it follows
thatx(SL(2,C)) = [1,+∞[, and since cosh−1 is injective on this interval, we have that
y := cosh−1 ◦ x also separates orbits in SL(2,C). We can now proveProposition 1.1of
Section 1.2.

Proof of Proposition 1.1. From the paragraph above, it is clear that any smoothG-invariant
function f̃ on SL(2,C) may be written as̃f = f ◦ y, for some uniquef : [0,+∞[→ R.
Now consider the smooth maph : R → SL(2,C) defined by

h(t) =
[

cosh(t/2) sinh(t/2)

sinh(t/2) cosh(t/2)

]
.

One can easily check thaty ◦ h(t) = t for t ≥ 0, hence

f(t) = (f ◦ y) ◦ h(t) = f̃ ◦ h(t), t ≥ 0,

which implies thatf is smooth. Note also thath is defined onR, and from theG-invariance
of f̃ we getf̃ ◦ h(−t) = f̃ ◦ h(t); thusf can be extended to an even function onR. �
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